
FERRET

USER’S GUIDE

Version 4.4

NOAA/PMEL/TMAP

Steve Hankin
Martha Denham
November 1996

http://www.ferret.noaa.gov


ABOUT THE COVER

The cover of this User’s Guide was produced by Ferret. From the top down the plots are: “Toga-Tao
SST,” time series from the Tropical Pacific Tao array; “Levitus Climatological SST,” an equal area
projection of level one of the annual Climatological Atlas of the World Oceans by Sydney Levitus
of NOAA/NODC; “Perturbation Solution,” a visualization of abstract functions by Dr. Ping Chang;
“Vents Megaplume Thermal Structure,” vertical temperature profiles of undersea thermal vents from
the NOAA Vents program.



iii

CONTENTS

Chapter 1:  INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1  OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1  Ferret User’s Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2  GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1  Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2  Unix command line switches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3  Sample sessions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3.1  Accessing a formatted data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2  Reading an ASCII data file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.3  Using viewports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.4  Using abstract variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.5  Using transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.6  Using algebraic expressions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3.7  Finding the 20-degree isotherm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3  COMMON COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4  COMMAND SYNTAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5  GO FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.1  Demonstration files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5.2  GO tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.3  Writing GO tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.1  Documenting GO tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.2  Preserving the Ferret state in GO tools. . . . . . . . . . . . . . . . . . . . . . . . 12
5.3.3  Silent GO tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.4  Arguments to GO tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3.5 Flow Control in GO tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3.6  Debugging GO tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6  SAMPLE DATA SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 UNIX TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

8  HELP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.1  Unix on-line help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2  Examples and demonstrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.3  Help from within Ferret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 2: DATA SETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1  OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



iv

2  NETCDF DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1  Multi-file NetCDF data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3  TMAP-FORMATTED DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4  BINARY DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1  FORTRAN-structured binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1  Records of uniform length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2  Records of non-uniform length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2  Unstructured binary files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 ASCII DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1  Reading ASCII files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6  TRICKS TO READING BINARY AND ASCII FILES . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 3: VARIABLES AND EXPRESSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1  VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.1 Variable syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2  File variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.3  Pseudo-variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.4  User-defined variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.5  Abstract variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
1.6 Missing value flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.6.1  Missing values in input files. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
1.6.2  Missing values in user-defined variables. . . . . . . . . . . . . . . . . . . . . . . 37
1.6.3  Missing values in output NetCDF files. . . . . . . . . . . . . . . . . . . . . . . . 37

2  EXPRESSIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1  Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Multi-dimensional expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3  Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4  Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1  General information about transformations. . . . . . . . . . . . . . . . . . . . 44
2.4.2  Transformations applied to irregular regions. . . . . . . . . . . . . . . . . . . 45
2.4.3  General information about smoothing transformations. . . . . . . . . . . 45
2.4.4  @DIN—definite integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.5 @IIN—indefinite integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.4.6  @AVE—average . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.7  @VAR—weighted  variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.8 MIN—minimum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4.9 @MAX—maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.10 @SHF:n—shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.11 @SBX:n—boxcar smoother. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.12 @SBN:n—binomial smoother . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



v

2.4.13 @SHN:n—Hanning smoother. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.14 @SPZ:n—Parzen smoother. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.15 @SWL:n—Welch smoother. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.16 @DDC—centered derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.17 @DDF—forward derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.4.18 @DDB—backward derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.19 @NGD—number of good points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.20 @NBD—number of bad points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.21 @SUM—unweighted sum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.4.22 @RSUM—running unweighted sum. . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.23 @FAV:n—averaging filler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.24 @FLN:n—linear interpolation filler . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.25 @FNR:n—nearest neighbor filler . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.26 @LOC—location of. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.4.27 @WEQ—weighted equal; integration kernel . . . . . . . . . . . . . . . . . . 53
2.4.28 @ITP—interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5  IF-THEN logic (“masking”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3  EMBEDDED EXPRESSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.1  Special calculations using embedded expressions. . . . . . . . . . . . . . . . . . . . . . . 58

4  DEFINING NEW VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.1  Global, local, and default variable definitions. . . . . . . . . . . . . . . . . . . . . . . . . . 61

5  DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS . . . . . . . . . . . . . . . . . 62

Chapter 4: GRIDS AND REGIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1  OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2  GRIDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.1  Defining grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
2.2  Dynamic grids and axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.1  Dynamic grids. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.2.2  Dynamic axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2.2.3  Dynamic pseudo-variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.3 Regridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
2.3.1 Regridding transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.4  Modulo regridding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.4.1  Modulo regridding statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3  REGIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.1 Latitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2 Longitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3 Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.4 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5 Delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



vi

3.6  @ notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7 Modulo axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapter 5: ANIMATIONS AND GIF IMAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1  OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2 CREATING AN HDF MOVIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3  DISPLAYING AN HDF MOVIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4  ADVANCED MOVIE-MAKING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1  REPEAT command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.1.1  Initializing the color table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2  Making movies in batch mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5  CREATING GIF IMAGES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6  CREATING MPEG ANIMATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Chapter 6: CUSTOMIZING PLOTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

1  OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2  GRAPHICAL OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.1  Ferret graphical output controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2  PPLUS graphical output commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3 AXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.1  Ferret axis controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.2  PPLUS axis commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4  LABELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.1  Listing labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2  Adding labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3  Removing movable labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4  Axis labels and title. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.5  Ferret label controls

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.6  PPLUS label commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7  Positioning labels using the mouse pointer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8  Labeling details with arrows and text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 COLOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1 Text and line colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1.1  Ferret color controls for lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.1.2  PPLUS text and line color commands. . . . . . . . . . . . . . . . . . . . . . . . . 99



vii

5.2  Shade and fill colors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.1  Ferret shade and fill color controls. . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2  PPLUS shade color commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6  FONTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1 Ferret font controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2  PPLUS font commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7  PLOT LAYOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1  Ferret layout controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.1 Viewports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.2  Pre-defined viewports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.3  Advanced usage of viewports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2  PPLUS layout commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3  Controlling the white space around plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8  CONTOURING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.1  Ferret contour controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.1.1  /LEVELS qualifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.2  PPLUS contour commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 7: HANDLING STRING DATA: “SYMBOLS” . . . . . . . . . . . . . . . . . . . . . . . . . 113

1  AUTOMATICALLY GENERATED SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

2  USE WITH EMBEDDED EXPRESSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3  ORDER OF STRING SUBSTITUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS . . . . . . . . . . . . . 115

5  USING SYMBOLS IN COMMAND FILES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6  PLOT+ STRING EDITING TOOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 SYMBOL EDITING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8  SPECIAL SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Chapter 8: COMPUTING ENVIRONMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

1 SETTING UP AN ACCOUNT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2  FILES AND ENVIRONMENT VARIABLES USED BY FERRET . . . . . . . . . . . . . . . 120

3  MEMORY USE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



viii

4  HARD COPY AND METAFILE TRANSLATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.1 Hard copy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
4.2 Metafile translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5  OUTPUT FILE NAMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6  INPUT FILE NAMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.1 Relative version numbers

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chapter 9: CONVERTING TO NetCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

1  OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2  SIMPLE CONVERSIONS USING FERRET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3  WRITING A CONVERSION PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.1  Creating a CDL file with Ferret . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
3.2  The CDL file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.2.1 Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.2.3  Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.3  Standardized NetCDF attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.4  Directing data to a CDF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
3.5  Advanced NetCDF procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.5.1 Staggered grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.5.2 Hyperslabs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.5.3  Unevenly spaced coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
3.5.4  Evenly spaced coordinates (long axes). . . . . . . . . . . . . . . . . . . . . . . . 140
3.5.5  “Modulo” axes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.5.6  Reversed-coordinate axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
3.5.7  Converting time word data to numerical data. . . . . . . . . . . . . . . . . 140

3.6  Example CDL file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4  CREATING A MULTI-FILE NETCDF DATA SET . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Part II: COMMANDS REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

1  ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

2  CANCEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.1  CANCEL ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.2  CANCEL AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.3  CANCEL DATA_SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
2.4  CANCEL EXPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.5  CANCEL LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
2.6  CANCEL MEMORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



ix

2.7  CANCEL MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.8  CANCEL MOVIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2.9  CANCEL REGION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2.10  CANCEL VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
2.11  CANCEL VIEWPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
2.12  CANCEL WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

3  CONTOUR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4  DEFINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.1  DEFINE ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.2  DEFINE AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.3  DEFINE GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.4  DEFINE REGION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.5  DEFINE VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.6  DEFINE VIEWPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5  ELIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6  ELSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7  ENDIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8  EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

9  FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

10  FILL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

11  FRAME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

12 GO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

13  HELP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

14  IF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

15  LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

16  LET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

17  LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

18  LOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

19  MESSAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



x

20  PALETTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

21  PLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

22  PPLUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

23  QUIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

24  REPEAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

25  SAVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

26  SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
26.1  SET AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
26.2  SET DATA_SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
26.3  SET EXPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
26.4  SET GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
26.5  SET LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
26.7  SET MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

26.7.1 SET MODE ASCII_FONT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
26.7.2  SET MODE CALENDAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
26.7.3  SET MODE DEPTH_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
26.7.4  SET MODE DESPERATE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
26.7.5  SET MODE DIAGNOSTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
26.7.6  SET MODE IGNORE_ERROR . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
26.7.7  SET MODE INTERPOLATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
26.7.8  SET MODE JOURNAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
26.7.9  SET MODE LATIT_LABEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
26.7.10  SET MODE LONG_LABEL

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
26.7.11  SET MODE METAFILE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
26.7.12  SET MODE POLISH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
26.7.13  SET MODE PPLLIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
26.7.14  SET MODE REFRESH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
26.7.15  SET MODE SEGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
26.7.16  SET MODE STUPID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
26.7.17  SET MODE VERIFY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
26.7.18  SET MODE WAIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

26.8   SET MOVIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
26.9  SET REGION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
26.10   SET VARIABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
26.11  SET VIEWPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
26.12  SET WINDOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

27  SHADE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

28  SHOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



xi

28.1  SHOW ALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
28.2  SHOW AXIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
28.3  SHOW COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
28.4  SHOW DATA_SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
28.5  SHOW EXPRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
28.6  SHOW GRID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
28.7  SHOW LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
28.8  SHOW MEMORY

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
28.9  SHOW MODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
28.10  SHOW MOVIE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
28.11  SHOW REGION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
28.12  SHOW TRANSFORM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
28.13  SHOW VARIABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
28.14  SHOW VIEWPORT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
28.15  SHOW WINDOWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

29  SPAWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

30  STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

31  UNALIAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

32  USE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

33  USER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
33.1  Objective analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
33.2  Scattered sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

34  VECTOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

35  WIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

GLOSSARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223



INTRODUCTION    1

Chapter 1:  INTRODUCTION

1  OVERVIEW

Ferret is an interactive computer visualization and analysis environment designed to meet the
needs of oceanographers and meteorologists analyzing large and complex gridded data sets.
“Gridded data sets” in the Ferret environment may be multi-dimensional model outputs, gridded
data products (e.g., climatologies), singly dimensioned arrays such as time series and profiles,
and for certain classes of analysis, scattered n-tuples (optionally, grid-able using an objective
analysis procedure provided in Ferret). Ferret accepts data from ASCII and binary files, and
from two standardized, self-describing formats. Ferret’s gridded variables can be one to four
dimensions—usually (but not necessarily) longitude, latitude, depth, and time. The coordinates
along each axis may be regularly or irregularly spaced.

Version 4.4 and higher versions of Ferret have added a point-and-click graphical user interface
(GUI) to Ferret. The GUI has been constructed to be 100% compatible with Ferret’s command
line interface. The user may freely mix text-based commands with mouse actions (push buttons,
etc.). Ferret’s journal file will log all of the actions performed during a session such that the
entire session, including GUI inputs, can be replayed and edited at a later time.

This User’s Guide describes only the command line interface to Ferret. Other documents
describe the point and click interface. 

Ferret was developed by the Thermal Modeling and Analysis Project (TMAP) at NOAA/PMEL
in Seattle to analyze the outputs of its numerical ocean models and compare them with gridded,
observational data. Model data sets are often multi-gigabyte in size with mixed 3- and
4-dimensional variables defined on staggered grids. Ferret offers the ability to define new
variables interactively as mathematical expressions involving data set variables. Calculations
may be applied over arbitrarily shaped regions.

Ferret provides fully documented graphics, data listings, or extractions of data to files with a
single command. Without leaving the Ferret environment, graphical output may be customized
to produce publication-ready graphics. Animations are also available. Ferret is supported on a
variety of Unix worstations with a version also available for Macintosh. A point-and-click
interface is under development at the time of this writing. Ferret is available at no charge from
anonymous FTP [node ftp.ferret.noaa.gov] or from the World Wide Web [URL
http://www.ferret.noaa.gov/]. For users with access to the World Wide Web, Ferret may be
perused in hypertext. 

ftp://ftp.ferret.noaa.gov
http://www.ferret.noaa.gov


2  CHAPTER 1

1.1  Ferret User’s Group

The Ferret User’s Group provides a venue to ask experienced Ferret users for advice solving
problems and to keep abreast of the latest Ferret updates. To join simply send an e-mail
message to

Majordomo@ferret.wrc.noaa.gov

and include a message which says simply

subscribe ferret_users

(Note this must be in the e-mail message BODY—not in the subject line.) To learn about the
user’s list without joining send this message instead to the same address:

info ferret_users

2  GETTING STARTED

A quick way to get to know Ferret is to run the tutorial provided with the distribution. 

% ferret
yes? GO tutorial

If Ferret is not yet installed consult Chapter 7. (The tutorial is also available through the World
Wide Web.) The tutorial demonstrates many of Ferret’s features, showing the user both the
commands given and Ferret’s textual and graphical output. You may find the explanations,
terms and examples in this manual easier to understand after running the tutorial.

2.1  Concepts

Words in bold below are defined in the glossary of this manual.

In Ferret all variables are regarded as defined on grids. The grids tell Ferret how to locate the
data in space and time (or whatever the underlying units of the grid axes are). A collection of
variables stored together on disk is a data set.

To access a variable Ferret must know its name, data set and the region of its grid that is
desired. Regions may be specified as subscripts (indices) or in world coordinates. Data sets,
after they have been pointed to with the SET DATA command, may be referred to by data set
number or name.

Using the LET command new variables may be created “from thin air” as abstract expressions
or created from combinations of known variables as arbitrary expressions. If component



INTRODUCTION    3

Figure 1

variables in an expression are on different grids, then regridding  may be applied simply by
naming the desired grid. 

The user need never explicitly tell Ferret to
read data. From start to finish the sequence
of operations needed to obtain results from
Ferret is simply:

1) specify the data set
2) specify the region
3) define the desired variable or

expression (optional)
3) request the output

For example (Figure 1),

yes? SET DATA coads ! g l o b a l
sea surface data
yes? SET REGION/Z=0/T="16-JAN-1982"/X=160E:160W/Y=20S:20N
yes? VECTOR uwnd,vwnd !wind velocity vector plot

2.2  Unix command line switches

ferret [-memsize Mwords] [-unmapped] [-gui] [-help] 

-memsize Mwords
specify the memory (data cache) size in Megawords default: 3.2

-unmapped
use invisible output windows (useful for creating animations and GIF files)

-gui
start Ferret in point-and-click mode (may not be available on all platforms)

-help
obtain help on the Unix command line options

2.3  Sample sessions

This section presents a number of short Ferret sessions that demonstrate common uses. Data
sets used in these sessions and throughout this manual are included with the distribution. If
Ferret is installed on your system, you can duplicate the examples shown.



4  CHAPTER 1

Figure 2

2.3.1  Accessing a formatted data set

In this sample session, the data set “monthly_navy_winds” is specified and certain aspects of
it are examined. The command SHOW DATA/VARIABLES displays the variables in
“monthly_navy_winds” and where on each axis they are defined. SET REGION specifies
where in the grid the user wishes to examine the data. VECTOR produces a vector plot of the
indicated variables over the specified region.

yes? SET DATA monthly_navy_winds ! specify the data set
yes? SHOW DATA/VARIABLES ! what's in it?
     currently SET data sets:
    1> /home/r3/tmap/fer_dsets/descr/monthly_navy_winds.des  (default)
     FNOC 2.5 Degree 1 Month Average World-wide Wind Field
 name     title                         I         J         K       L
 UWND     ZONAL WIND                   1:144     1:73      1:1     1:132
             M/S on grid FNOC251 with -99.9 for missing data
             X=18.8E:18.8E(378.8)  Y=91.3S:91.3N  
 VWND     MERIDIONAL WIND              1:144     1:73      1:1     1:132
             M/S on grid FNOC251 with -99.9 for missing data
             X=18.8E:18.8E(378.8)  Y=91.3S:91.3N  
 
  time range: 16-JAN-1982 20:00 to 17-DEC-1992 03:30

2.3.2  Reading an ASCII data file

Many examples of accessing ASCII data are available later in this manual. See Chapter 2, “Data
Sets.” The simplest access, one variable with one value per record, looks like this:

% ferret
yes? FILE/VARIABLE=v1 snoopy.dat
yes? PLOT v1
yes? QUIT

2.3.3  Using viewports

The command SET VIEWPORT allows
the user to divide the output graphics
“page” into smaller display viewports.

In this sample session, we create twp plots
in two halves of a window (Figure 2):

% ferret
yes? SET DATA coads_climatology
yes? SET REGION/X=160E:130W
yes? SET REGION/Y=-10:10/L=5
yes? SET VIEWPORT upper
yes? CONTOUR sst



INTRODUCTION    5

Figure 3

Figure 4

yes? SET VIEWPORT lower
yes? CONTOUR airt
yes? QUIT

2.3.4  Using abstract variables

Abstract variables (expressions that contain
no dependencies on disk-resident data) can
be easily displayed with Ferret. See Chapter
3, section “Abstract variables,” for several
examples and detailed information.

For example, a user wishing to examine the
function SIN(X) on the interval [0,3.14]
might use (Figure 3):

% ferret
yes? P LOT/I=1:100 sin(3.14*I/100)
yes? QUIT

2.3.5  Using transformations

A transformation is an operation performed on a variable along a particular axis and is specified
with the syntax “@trn” where “trn” is the name of a transformation. See Chapter 3, section
“Transformations,” for detailed information.

A user may wish to look at ocean
temperatures averaged over a range of
depths. In this sample session, we look at
temperatures averaged from 0 to 100 meters
of depth using a data set which has detailed
resolution in depth (Figure 4). We plot the
data along longitude 160 west from latitude
30 south to 30 north.

% ferret
yes? SET DATA levitus_climatology
yes? SET REGION/Y=30s:30n/X=160W
yes? PLOT temp[Z=0:100@AVE]
yes? QUIT



6  CHAPTER 1

2.3.6  Using algebraic expressions

See Chapter 3, section “Expressions” for a description of valid expressions.

In this example, the data set contains raw sea surface temperatures, air temperatures, and wind
speed measurements. We wish to look at a shaded plot of sensible heat at its first timestep
(L=1) (Figure 5). We specify a latitude range and contour levels.

% ferret
yes? SET DATA coads_climatology !monthly COADS climatology
yes? LET kappa = 1 !arbitrary
yes? LET/TITLE="SENSIBLE HEAT"  sens_heat = kappa * (airt-sst) * wspd
yes? SHADE/L=1/LEV=(-20,20,5)/Y=-90:40 sens_heat
yes? QUIT

Figure 5

2.3.7  Finding the 20-degree isotherm

Isotherms can be located with the “@LOC” transform, which returns the axis location where
the value of the argument of @LOC first occurs. Thus, “TEMP[Z=0:200@LOC:20]” locates
the first occurrence of the temperature value 20 along the Z axis, scanning all the data between
0 and 200 meters.



INTRODUCTION    7

Figure 6

A session examining the 20 degree isotherm
in mid-Pacific ocean data (Figure 6):

% ferret
yes? SET DATA levitus_climatology
yes? SET REG/Y=10s:30n/X=140E:140W
yes? PPL CONSET .12  !label size
yes? C ONTOUR temp[Z=0:200@LOC:20]
yes? QUIT

Note that the transformation @WEQ could
have been used to display ANY variable on
the surface defined by the 20 degree
isotherm.

3  COMMON COMMANDS

A quick reference to the most commonly used Ferret commands (typing “SHOW
COMMANDS” at the Ferret prompt lists all commands):

Command Description
SET DATA_SET names the data set to be analyzed
SHOW DATA produces a summary of variables in a data set 
SHOW GRID examines the coordinates of a grid
SET REGION sets the region to be analyzed
LIST produces a listing of data
PLOT produces a plot
CONTOUR produces a contour plot (/FILL for color-filled contour plot)
VECTOR produces a vector arrow plot
SHADE produces a shaded-area plot
STATISTICS produces summary statistics about variables and expressions
LET defines a new variable
SAVE saves data in NetCDF format
GO executes Ferret commands contained in a file
 
Information on all Ferret commands is available in Part II, Commands Reference, of this
manual.



8  CHAPTER 1

4  COMMAND SYNTAX

Commands in program Ferret conform to the following template:

COMM [/Q1/Q2...] [SUBCOM[/S1/S2...]] [ARG1 ARG2 ...] [!comment]

where

COMM is a command name   yes? LIST

Q1... are qualifiers of the command  yes? CONTOUR/SET_UP

SUBCOM is a subcommand name   yes? SHOW MODE

S1... are qualifiers of the subcommand  yes? SET LIST/ APPEND

ARG1... are arguments of commands   yes? CANCEL MODE INTERPOLATE

notes...
– Items in square brackets are optional.
– One or more spaces or tabs must separate the command from the subcommand and from

each of the arguments. Spaces and tabs are optional preceding qualifiers.
– Multiple commands, separated by semi-colons, can be given on the same line.
– Command names, subcommand names, and qualifiers require at most 4 characters.

(e.g., yes? CANCEL LIST/PRECISION  is equivalent to
yes? CANC LIST/PREC)

– Some qualifiers take an argument following “ = “
(e.g., yes? LIST/Y=10S:10N ).

– An exclamation mark normally signifies the end of a command and the start of (optional)
comment text.

– The backslash character (\), when placed directly before an exclamation point (!),
apostrophe (‘), semicolon (;), or forward slash (/), will hide it (“escape it”) from Ferret.

5  GO FILES

GO files are files containing Ferret commands. They can be executed with the command “GO
filename”. Throughout this manual, these files are referred to as GO scripts or journal files (the
file names end in *.jnl). There are two kinds of GO files provided with the distribution
(differing in function, not form)—demos and tools.

5.1  Demonstration files

Demonstration GO files provide examples of various Ferret capabilities (the tutorial is such a
script) . The demonstration GO files may be executed simply by typing the Ferret command 

yes? GO demo_name

example:  yes? GO spirograph_demo



INTRODUCTION    9

Below is a list of the demo files provided (located in directory $FER_DIR/examples). The Unix
command “Fgo demo” will list all GO scripts containing the string “demo”. 

Name Description
tutorial brief tour through Ferret capabilities
topographic_relief_demo global topography
coads_demo view of global climate using the Comprehensive Ocean-

Atmosphere Data Set
levitus_demo  T-S relationships using Sydney Levitus’ climatological Atlas

of the World Oceans
fnoc_demo Naval Fleet Numerical Oceanography Center data
vector_demo vector plots
wire_frame_demo 3D wire frame representation
custom_contour_demo customized contour plots
viewports_demo output to viewports
multi_variable_demo multiple variables with multiple dependent axes
objective_analysis_demo interpolating scattered data to grids
polar_demo polar stereographic projections
mercator_demo mercator projections
log_plot_demo log plots using PPLUS in Ferret
depth_to_density_demo contour with a user-defined variable as an axis
file_reading_demo reading an ASCII file
regridding_demo tutorial on regridding data
mathematics_demo abstract function calculation
statistics_demo probability distributions
spirograph_demo for-fun plots from abstract functions
splash_demo for-fun mathematical color shaded plots
symbol_demo how to use symbols for plot layouts
sigma_coordinate_demo how to work with sigma coordinates

5.2  GO tools

GO tools are scripts which contain Ferret commands and perform dataset-independent tasks.
For example, “GO land” overlays the outline of the continents on your plot. (Note: In order for
Ferret to locate the GO scripts, the environment variable FER_GO must be properly defined.
See Chapter 7, “Computing Environment,” for guidance.)

The Unix command Fgo has been provided to assist with locating tools within the Unix
directory hierarchy. For example, 

% Fgo grid displays all tools with the substring “grid” in their names
% Fgo '*' displays all GO tools and demonstrations

Below is a table of the tools provided with your Ferret installation. Some tools accept optional
arguments to control details. Use Fgo -more script_name  for details on a script. 



10  CHAPTER 1

 Tool name Description

OVERLAYS
basemap a geographical basemap of continents to overlay on
land overlays continental boundaries (color controls)
bold_land overlays darker continental boundaries
fland overlays filled continents (color and resolution controls)
focean overlays ocean mask (for terrestrial plots)
graticule sets the plot axis style to use a graticule (rather than tics)
tics resets the plot style to use axis tics (rather than a graticule) 
gridxy overlays a “graticule” labeling the I,J subscripts
gridxz overlays a “graticule” labeling the I,K subscripts
gridxt overlays a “graticule” labeling the I,L subscripts
gridyz overlays a “graticule” labeling the J,K subscripts
gridyt overlays a “graticule” labeling the J,L subscripts
gridzt overlays a “graticule” labeling the K,L subscripts
box draws a box at the specified location on the plot
ellipse draws an ellipse at the specified location on the plot

MATHEMATICAL
frequency_histogram makes a frequency distribution plot (histogram) of data
ts_frequency creates a 2-variable histogram (typically an oceanographer’s TS

density diagram)
polar defines R and THETA from X and Y to perform (limited) polar plots
regressx defines variables for linear regression along X axis
regressy defines variables for linear regression along Y axis
regressz defines variables for linear regression along Z axis
regresst defines variables for linear regression along T axis
unit_square sets unit square as default for abstract variables
variance defines variables to compute variances and covariances
var_n refines TVARIANCE with corrected n/n+1 factors
dynamic_height defines Ferret variables for dynamic height calculations

SAMPLE DISPLAYS
line_samples draws specimens of the available line styles
line_thickness draws examples of pen color/thickness styles in PPLUS
fill_samples draws specimens of the available fill styles
show_symbols draws specimens of the default symbols 
show_88_syms draws specimens of all 88 PPLUS symbols

GRAPHICS
bar_chart makes a color-filled bar chart from a line of data
bar_chart2 makes a bar chart using hollow rectangles
centered_vectors makes a vector plot with coords at vector midpoints
scattered_vectors makes a vector plot from an ASCII file: x,y,u,v



INTRODUCTION    11

stick_vectors makes a stick vector plot of a line of U,V values
extremum annotate contour extrema on a plot
split_z oceanographic-style plot with 2 z-axis scalings

PLOT APPEARANCE
margins tweak the sizing of the plot on the page
magnify [factor] increases the data plotting area (area inside the axes)
unmagnify restores the plot origin and axis lengths to default values
black sets video background to black, foreground to white
white sets video background to white, foreground to black
bold sets up PLOT+ and Ferret to produce bolder-looking plots
unbold resets plot environment to normal after “GO bold”
unlabel [label #] removes a specified (numbered) PPLUS movable label
remove_logo removes labels 1–3 that form the Ferret logo
box_plot produces a plot with “bare” axes (no tics, no labels)
reminder place small annotations in upper left corner of plot

COLOR
try_palette [pal] displays palette appearance for various numbers of color levels
try_centered_palette displays centered palette appearance for various numbers of levels
exact_colors sets up Ferret and PPLUS to modify individual colors in a color

palette
squeeze_colors modifies a color palette by squeezing and stretching the color scale

MULTIPLE X AND Y AXES  (run demo: yes? GO multi_variable_plots )
left_axis_plot plots a single variable preparing for a 2nd axis on the right
right_axis_plot overlays a plot of a single variable using an axis on the right
multi_xaxis_plot1 draws a plot formatted for later overlays using multiple X axes
multi_xaxis_overlay overlays a variable with a distinct X axis
multi_yaxis_plot1 draws a plot formatted for later overlays using multiple Y axes
multi_yaxis_overlay overlays a variable with a distinct Y axis

POLAR STEREOGRAPHIC PROJECTIONS (run demo: yes? GO polar_demo )
convert_to_polar_2d extracts (sample) data for a 2D polar plot
polar_2d produces a 2D polar stereographic plot
polar_fland overlays solid-filled continents on a polar plot
polar_grid overlays “quick” radial longitude and curved latitude lines
polar_grid_fancy overlays “fancy” radial longitude and curved latitude lines
polar_land overlays the continental outlines on a polar stereographic plot
polar_map_inv_eqns defines the equations used for polar projections
polar_vector produces a 2D polar stereographic vector plot
polar_vs performs a polar PLOT/VS of 2 variables: lat long
projected_map_grid defines the map grid for a projected plot



12  CHAPTER 1

SAMPLING A GRIDDED FIELD
vertical_section extract an arbitrary vertical section from a 3D field 

GRIDDING POINT DATA
objective gridding of 2D data

TESTS
test tests proper functioning of FER_GO
ptest produces a quick test plot
squares creates a filled-area test plot

5.3  Writing GO tools

A GO tool (“GO script,” “journal file,” ...) is simply a sequence of Ferret commands stored in
a file and executed with the GO command. Writing a simple GO tool requires nothing more
than typing normal commands into a file.

To write a robust GO tool that may be shared, however, certain guidelines should be followed:

1) the GO tool should be well documented
2) the GO tool should leave the Ferret context unmodified
3) the GO tool may need to run “silently”
4) the GO tool may need to accept arguments (parameters)

5.3.1  Documenting GO tools

Documentation consists primarily of well-chosen comment lines (lines beginning with an
exclamation mark). In addition, a line of this form should be included:

! Description:  [one-line summary of your GO tool]

This line is displayed by the Fgo tool.

5.3.2  Preserving the Ferret state in GO tools

Often a complex GO tool requires setting data sets, modifying the current region, etc. But to
a user executing this tool its behavior may seem erratic if the user’s previous context is
modified by running the tool. A tool can restore the previous state of Ferret by these means:

region: Save the current default region with the command DEFINE REGION/DEFAULT
save. Restore it at the end of your GO tool with SET REGION save.

data set: Save the current default data set with SET DATA/SAVE. Restore it at the end of
your GO tool with SET DATA/RESTORE.



INTRODUCTION    13

grid: Save the current default grid set with SET GRID/SAVE. Restore it at the end of your
GO tool with SET GRID/RESTORE.

modes: If you modify a mode inside your GO tool by issuing a SET MODE or a CANCEL
MODE command the original state of that mode can be restored using SET
MODE/LAST.

5.3.3  Silent GO tools

If a user has set mode “verify” then by default every line of your GO tool, including comment
lines, will be displayed at the screen as Ferret processes it. To make your GO tool run silently
include the command CANCEL MODE VERIFY at the beginning of the GO tool and SET
MODE/LAST VERIFY at the end. If the backslash character “\” is found at the beginning of
any line that single line will not be displayed regardless of the state of MODE VERIFY. Thus
the command “\CANCEL MODE VERIFY” is often the first line of a GO tool. Note also that
the command LET/SILENT is useful in GO tools which need to define variables.

5.3.4  Arguments to GO tools

Arguments (parameters) may be passed to GO tools on the command line. For example,

yes? GO land red

passes the string “red” into the GO file named land.jnl. Inside the GO tool the argument string
“red” is substituted for the string “$1" wherever it occurs. The “1" signifies that this is the first
argument—similar logic can be applied to $1,... $9 or $0 where $0 is replaced by the name of
the GO tool itself. Similarly “$*” is replaced by all the arguments, 1–9 as a single string.

As Ferret performs the substitution of $1 (or other) arguments it offers a number of string
processing and error processing options. For example, without these options, if a user failed to
supply an argument to “GO land” then Ferret would not know what to substitute for $1 and it
would have to issue an error message. A default value can be supplied by the GO tool writer
using the syntax

$1%string%

for example, 

$1%black%

inside land.jnl would default to “black” if no color were specified. Note that in the example
percent signs were used to delimit the default string but any of the characters ! # $ % or & also
work as delimiters.



14  CHAPTER 1

In another case it might not be appropriate to supply a default string but instead it would be
desirable to issue an instructional error message. The “<” character indicates an error message
text:

$1"<you must supply an argument to this GO tool"

In still other cases there are a range of acceptable arguments but all other arguments are illegal.
The allowable arguments can be specified following “|” (vertical bar) characters as in this
example:

$1"|black|red|<You must specify black or red"

or a default of “black” could be specified together with the options as

$1"black|black|red|"

In the interest of “friendliness” a GO file may want to allow the user to specify a string other
than the string actually needed by the GO tool. For example, a red plot line is actually obtained
by the PLOT command qualifier /LINE=2—the string “red” never appears in this command.
To allow a user to specify “red” and yet have the string “2” substituted, Ferret has provided the
replacement arrow “>”. Thus

$1"1|red>2|"

specifies a default string of “1” if no argument is given but substitutes “2” if “red” is supplied.
In a typical GO tool line, defaults, options, substitutions, and an error message are combined
like this:

PLOT/LINE=$1"1|red>2|green>3|blue>4|<must be red, green, or blue"

Note that the error message will be issued only if some color other than “red,” “green,” or
“blue” is specified; if no argument is specified then “1” is substituted.

An asterisk (*) can be used to designate that any text whatsoever is acceptable as an option.

PLOT/LINE=$1"1|red>2|green>3|blue>4|*>7"

would never generate an error and would use line style 7 (thick black) if an unrecognized
argument string such as “purple” were given.

An asterisk (*) can also be used on the right-hand side of a substitution, in which case it stands
for the entire original argument string. For example

SET VARIABLE/TITLE=$1%*>"*"%

will place double quotation marks around the string in argument 1.



INTRODUCTION    15

A final style note to keep in mind when writing GO tools that use arguments: providing error
message feedback and appropriate documentation for the user is essential.  In complex GO
tools, all arguments should be checked at the beginning of the GO tool using the no-op
command (has no effect) “QUERY/IGNORE”. Thus the GO tool land.jnl might contain these
lines at the beginning:

! check the argument
QUERY/IGNORE $1"1|red|green|blue|<must be red, green, or blue"

Once argument errors have been trapped and reported, the lengthy error text would not be
needed again in the GO tool.

GO tools that use arguments should also be carefully documented. There are numerous
examples provided with Ferret; try, for example, the Unix commands

% Fgo -more fland.jnl
% Fgo -more stick_vectors

  or
% Fgo -more squeeze_colors

5.3.5 Flow Control in GO tools

There are several Ferret commands and techniques to assist with flow control in your GO
scripts.

GO (subroutines)

The GO command may be used inside of a GO script (tool) to execute another (nested) GO
script. If an error occurs inside of a nested GO script and SET MODE IGNORE_ERROR has
not been issued then the GO script will be interrupted and control returns to the command line.

REPEAT (looping)

The REPEAT command may be used to execute loops within Ferret. The loop “counter” may
be an index (I,J,K, or L) or a world coordinate (longitude, latitude, depth, or time). The
increment between loop interations need not correspond to the spacing of points on a grid.
When used in conjunction with the “d” options of SET REGION, such as SET
REGION/DI="-5:-5" the loops may be used to zoom in or out of a region or to pan a
limited-width window of view across a larger region. See the Advanced Movie-Making section
of this manual for further details. 



16  CHAPTER 1

IF-THEN-ELSE (conditional execution)

An IF-THEN-ELSE syntax can be used to conditionally execute Ferret commands. It may be
used in two styles—single line and multi-line. See the IF command in the Commands Reference
section of this manual for further details.

5.3.6  Debugging GO tools

As the complexity of Ferret GO scripts increases it becomes more challenging to locate and
correct errors in GO scripts. This is especially true if, as so many GO scripts do, the scripts are
made silent by containing the command CANCEL MODE VERIFY. In a silent script it can be
unclear from where within the script an error message is originating.

A special VERIFY mode has been provided to assist with locating the source of these error
messages

SET MODE VERIFY:ALWAYS

The ALWAYS argument to this command instructs Ferret to ignore CANCEL MODE VERIFY
commands inside of command files. All of the script commands that Ferret executes will be
echoed when this mode is set. Error messages will appear with the commands that generated
them. To restore normal non-debugging operations issue CANCEL MODE VERIFY or SET
MODE VERIFY (no argument) interactively from the yes?  prompt.

Complex webs of variable definitions (defined with LET or DEFINE VARIABLE) may also
create challenges for debugging scripts. See Debugging Complex Hierarchies of Expressions
for further discussion of this topic.

6  SAMPLE DATA SETS

A number of demonstration data sets are included with this distribution. Several of these data
sets are used by the demonstration “GO” files, above. The data sets should be accessible simply
by typing the Ferret command 

yes? SET DATA data_set_name       for example,

yes? SET DATA coads_climatology

Demonstration data are located in directory $FER_DSETS/data. Grids are located in directory
$FER_DSETS/grids. For GT and TS format datasets, descriptor files are located in directory
$FER_DSETS/descr. 

Data set Description
etopo120 relief of the earth’s surface at 120-minute resolution



INTRODUCTION    17

etopo60 relief of the earth’s surface at 60-minute resolution
levitus_climatology subset of the Climatological Atlas of the World Oceans by Sydney

Levitus (Note: the updated World Ocean Atlas, 1994, is also
available with Ferret)

coads_climatology 12-month climatology derived from 1946-1989 of the
Comprehensive Ocean/Atmosphere Data Set

monthly_navy_winds Monthly-averaged Naval Fleet Numerical Oceanography Center
global marine winds (1982–1990)

esku_heat_budget Esbensen-Kushnir 4×5 degree monthly climatology of the global
ocean heat budget (25 variables)

7 UNIX TOOLS

A number of tools are provided with Ferret to assist with Unix-level activities:  on-line help,
converting data to Ferret’s formats, locating files, etc. They are located in the Ferret installation
area—typically $FER_DIR/bin. See Chapter 7, “Setting Up an Account,” if the tools are not
available on-line. They are described below.

Faddpath Usage: Faddpath new_path
Faddpath will add a new path name to the default lists of directories that Ferret searches a)
in response to the SET DATA command; b) when looking for grid definition files; c) when
looking for data files.

Fapropos Usage:  Fapropos string (i.e. % Fapropos regridding )
 Fapropos searches the Ferret User’s Guide for all occurrences of the given word or string.

The string is not case sensitive. If the string contains multiple words it must be enclosed in
quotation marks. Fapropos will list all lines of the User’s Guide that contain the word or
string and report their line numbers. The line numbers may be used with Fhelp to enter the
User’s Guide at the desired location. 

Fdata Usage: Fdata data_file_substring
Searches the list of directories contained in the environment variable FER_DATA to find
the data files whose names contain the indicated substring. For example,

% Fdata coads

locates the data files containing “coads” in their names. (Use this command to locate
NetCDF data sets by giving the string “cdf”.)

Fdescr Usage: Fdescr des_name_substring
Searches the list of directories contained in the environment variable FER_DESCR to find
the descriptor files whose names contain the indicated substring. For example, 

% Fdescr coads



18  CHAPTER 1

locates the descriptor files containing “coads” in their names. (“Fdescr .des” will list all
accessible descriptors.)

Fenv Usage: Fenv
Prints the values of environment variables used by Ferret

Fgo Usage: Fgo name_substring
Searches the list of directories contained in the environment variable FER_GO to find the
GO command files whose names contain the indicated substring. For example,

% Fgo grid

locates the Ferret tools that contain “grid”. 

Fgrids Usage: Fgrids gridfile_substring
Searches the list of directories contained in the environment variable FER_GRIDS to find
the grid definition files whose names contain the indicated substring. For example, 

% Fgrids fnoc

locates the grid definition files containing “fnoc” in their names. (“Fgrids .grd” will list all
accessible grid files.)

Fhelp Usage: Fhelp line_number  or  Fhelp string
Fhelp enters the Ferret User’s Guide beginning at the indicated line number or at the first
occurrence of the given string. The string, if used, is not case sensitive. The Unix “more”
command is used to access the User’s Guide. The most commonly used “more” commands
are documented under Ftoc.

Examples: % Fhelp  1136
% Fhelp  "modulo axis"

Fman Usage: Fman
(Not yet implemented.) Enters the Ferret User’s Guide as on-line, formatted hypertext.

Fpalette Usage: Fpalette name_substring
Searches the list of directories contained in the environment variable FER_PALETTE to
find the palette files whose names contain the indicated substring. For example,

% Fpalette blue

locates the palette files containing “blue” in their names.



INTRODUCTION    19

Fpurge Usage: Fpurge filename_template
Fpurge is a support routine to manage multiple versions of files created by Ferret—
particularly journal files and graphic metafiles. Fpurge will remove all versions of a file
except the current version. For example, “Fpurge ferret.jnl” will eliminate all past versions
of ferret.jnl in the current directory. 

Fsort Usage: Fsort filename_template
Fsort is a support routine for sorting file versions. Fsort reorders the incorrect ordering of
emacs-style version numbers assigned by the Unix “ls” utility. e.g., when sorting, ls will
place filename.~19~ before filename.~2~. “Fsort filename*” will take care of this problem.
Fsort may be used in Unix pipes.

Ftoc Usage:  Ftoc
Ftoc enters the table of contents of the Ferret User’s Guide using the Unix “more” command.
Within “more” the following are the most commonly used commands: 

? – interactive help for “more”
q – exit (quit)
space – advance to next screen
return – advance to next line
b – back one screen
/string – locate the next occurrence of “string” (Note: the string is case sensitive)

8  HELP

8.1  Unix on-line help

On Unix systems interactive Ferret help is available from the command line. If multiple
windows are not available on your system the ^Z key can be used to suspend the current Ferret
session and access the help; the Unix “fg” command resumes the suspended session.

Several Unix commands provide assistance with rapidly locating information in the Ferret
User’s Guide. The entire Ferret User’s Guide is available on-line as document
$FER_DIR/doc/ferret_users_guide.txt. A printable version is also available in PostScript:
$FER_DIR/doc/ferret_users_guide.ps. 

These commands are available to access the Ferret User’s Guide:
Ftoc – browse the table of contents of the User’s Guide
Fapropos – locate words or character strings in the User’s Guide
Fhelp – enter and browse the User’s Guide
Fman – enter and browse the User’s Guide as formatted hypertext (not yet

implemented)



20  CHAPTER 1

Normally Ftoc or Fapropos is used first to locate the desired information in the User’s Guide.
Then Fhelp is used to enter the User’s Guide at the selected location. 

8.2  Examples and demonstrations

As discussed earlier in this chapter (Getting Started, GO files), the demonstrations that come
with the Ferret distribution are a source of help.  See Chapter 1, section “Demonstration files,”
for a list of demonstrations, or look in $FER_DIR/examples; you may find something that
addresses your problem.

8.3  Help from within Ferret

Typing “help” while running Ferret will give you information on using the Unix tool Fhelp to
access the User’s Guide. 

The Ferret command SHOW COMMANDS will list all Ferret commands; SHOW COMMAND
“command” will display all qualifiers for the specified command.



DATA SETS  21

Chapter 2: DATA SETS

1  OVERVIEW

Ferret accepts input data from both ASCII and binary files and recognizes two standardized,
self-describing data formats—NetCDF, and TMAP. Network Common Data Format (NetCDF)
is the suggested method of data storage. 

SET DATA_SET or just SET DATA specifies a data set for access. ASCII and binary files can
be read using SET DATA/EZ (also known as “FILE”). To unambiguously specify the format
of a data set, include the extension .cdf or .des in its name, or use the qualifier
/FORMAT=CDF.

To examine what each data set consists of (variables, grids, etc.) after specifying them with
SET DATA, use SHOW DATA. This command displays the variables in the data set and over
what geographical and time ranges they are defined.

Here is an example of Ferret’s output:

yes? SET DATA coads_climatology
yes? SHOW DATA

     currently SET data sets:
    1> /home/e1/tmap/fer_dsets/descr/coads_climatology.des  (default)
name     title                          I         J         K        L
SST     SEA SURFACE TEMPERATURE         1:180     1 :90      1:1       1:12
AIRT    AIR TEMPERATURE                 1:180     1 :90      1:1       1:12
SPEH    SPECIFIC HUMIDITY               1:180     1 :90      1:1       1:12
WSPD    WIND SPEED                      1:180     1 :90      1:1       1:12
UWND    ZONAL WIND                      1:180     1 :90      1:1       1:12
VWND    MERIDIONAL WIND                 1:180     1 :90      1:1       1:12
SLP     SEA LEVEL PRESSURE              1:180     1 :90      1:1       1:12

If multiple data sets have been requested in a single Ferret session, the last requested will be the
default data set. To specify other data sets, use the name of the data set or the number of the set
as given by the SHOW DATA statement. For example:

yes? LIST/D=2  temp

will list the data for the variable “temp” in data set number 2 as displayed by SHOW
DATA/BRIEF, while

yes? LIST temp[D=levitus_climatology] - temp[D=coads_climatology]

will list the differences between the variable “temp” in data set “levitus_climatology” and data
set “coads_climatology.”



22  CHAPTER 2

2  NETCDF DATA

The Network Common Data Format (NetCDF) is an interface to a library of data access
routines for storing and retrieving scientific data. NetCDF allows the creation of data sets which
are self-describing and platform-independent. NetCDF was created under contract with the
Division of Atmospheric Sciences of the National Scientific Foundation and is available from
the Unidata Program Center in Boulder, Colorado (unidata.ucar.edu).

See Chapter 8, “Converting Data to NetCDF,” for a complete description of how to create
NetCDF data sets or how to convert existing data sets into NetCDF.

To output a variable in NetCDF, simply use:

yes?  LIST/FORMAT=CDF variable_name

LIST/FORMAT=CDF (alias SAVE) can also be used with abstract variables:

yes? SAVE/FILE=example.cdf/I=1:100 sin(I/100)

This will create a file named example.cdf. 

The current region and data sets determine the variable names in the saved file and the range
over which they are saved. Saved data can then be accessed as follows:

yes? USE example

(USE is an alias for SET DATA/FORMAT=CDF)

If a filename is not specified, Ferret will generate one. (See command SET LIST/FILE in the
Commands Reference section of this manual.) An example of converting TMAP-formatted data
to NetCDF goes as follows:

yes? SET DATA coads_climatology
yes? SAVE/L=1 sst,airt,uwnd,vwnd

These commands will save sst, airt, uwnd, and vwnd at the first time step over their entire
regions to a NetCDF file named by Ferret.

One advantage to using NetCDF is that users on a different system (i.e., VMS instead of Unix)
with different software (i.e., with an analysis tool other than Ferret) can share data easily
without substantial conversion work. NetCDF files are self-describing; with a simple command
the size, shape and description of all variables, grids and axes can be seen.



DATA SETS  23

2.1  Multi-file NetCDF data sets

Ferret supports collections of NetCDF files that
sets are referred to as “MC” (multi CDF) data sets. They are particularly useful to manage the
outputs of numerical models. MC data sets use a descriptor file, in the style of TMAP-formatted data
sets. The data set is referred to inside Ferret by the name of this descriptor file.

A collection of NetCDF files is suitable to form a multi-file data set if 

1) The files are connected through their time axis—each file represents one or more time
snapshots of the variables it contains.

2) Each file is self-documenting with respect to the time axis of the variables—even if the
time axis represents only a single point. (All of the time axes must be identically
encoded with respect to units and date of the time origin.)

3) All non-time-dependent variables in the data set must be contained in first file of the
data set (or those variables will not appear in the merged, MC, data set).

A typical MC descriptor file may be found in Chapter 9, Section 4, “Creating an multi-NetCDF
data set.” Further documentation on MC data sets may be found in the Ferret home pages on
the Web.

3  TMAP-FORMATTED DATA

As of Ferret version 2.30, NetCDF is the suggested format for data storage (see Chapter 8,
“Converting to NetCDF”). This section describing TMAP information is included only for users
who already work with data in TMAP format.

To access TMAP-formatted data sets use

SET DATA_SET TMAP_set1, TMAP_set2, ...

TMAP_setn must be the name of a descriptor file for a data set that is in TMAP “GT” (grids-at-
timesteps) or “TS” (time series) format. (“Ferret” format and “TMAP” format are synonyms.)

If the directory portion of the filename is omitted the environment variable FER_DESCR will
be used to provide a list of directories to search. The order of directories in FER_DESCR
determines the order of directory searches. If the extension is omitted a default of “.des” will
be assumed (if the filename has more than one period, the extension must be given explicitly).

Descriptors

For every TMAP-formatted data set there is a descriptor file containing summary information
about the contents of the data set. This includes variable names, units, grids, and coordinates.



24  CHAPTER 2

When the command SET DATA_SET is given to Ferret pointing to a GT-formatted or TS-
formatted data set, it is the name of the descriptor file that must be specified.

4  BINARY DATA

Binary data words must all begin on 4-byte boundaries to be accessible by Ferret. To
understand how to access binary data files with Ferret it is necessary to understand something
of the structure of binary files. Binary files are of two general types—files containing record
length information and files without imbedded record length information. Within each of these
categories the records may actually be of uniform length or of variable length.

4.1  FORTRAN-structured binary files

Files containing record length information are created by FORTRAN programs using the
ACCESS="SEQUENTIAL" (the FORTRAN default) mode of file creation and also by Ferret
using LIST/FORMAT=unf. Suppose “rrrr” represents 4 bytes of record length information and
“dddd” represents a 4-byte data value. Then FORTRAN-structured files are organized in one
of the following two ways:

4.1.1  Records of uniform length

A FORTRAN-structured file with records of uniform length (3 single-precision floating point
data values per record in this figure) look as follows:

rrrr dddd dddd dddd rrrr
rrrr dddd dddd dddd rrrr
... 

FORTRAN code that creates a data file of this type might look something like this (sequential
access is the default and need not be specified in the OPEN statement):

REAL VARI(10), VAR2(10), VAR3(10)
...
OPEN(UNIT=20,FORMAT="UNFORMATTED",ACCESS="SEQUENTIAL",FILE="MYFILE.DAT")
...
DO 10 I=1,10

WRITE (20) VAR1(I), VAR2(I), VAR3(I)
10 CONTINUE
....

To access data from this file, use

yes? SET DATA/EZ/FORMAT=UNF/VAR=var1,var2,var3/COL=3  myfile.dat     or,
yes? FILE/FORMAT=UNF/VAR=var1,var2,var3/COLUMNS=3  myfile.dat



DATA SETS  25

This is very similar to accessing ASCII data with the addition of the /FORMAT=unf qualifier.
The /COLUMNS= qualifier tells Ferret the number of data values per record. Although optional
in the above example, this qualifier is required if the number of data values per record is greater
than the number of variables being read (examples follow in section “ASCII Data”).

4.1.2  Records of non-uniform length

A FORTRAN-structured file with variable-length records may look as follows:

rrrr dddd dddd rrrr
rrrr dddd rrrr
rrrr dddd dddd dddd dddd rrrr
etc.

With care, it is possible to read a data file containing variable-length records which was created
using the simplest unformatted FORTRAN OPEN statement and a single WRITE statement for
each variable. Use /FORMAT=stream to read such files. Note that sequential access is the
FORTRAN default and does not need to be specified in the OPEN statement:  

REAL VAR1(1000), VAR2(500)
...
OPEN (UNIT=20, FORMAT="UNFORMATTED", FILE="MYFILE.DAT")
...
WRITE (20) VAR1
WRITE (20) VAR2
....

Use the qualifier /SKIP to skip past the record length information (/SKIP arguments are in units
of words), and define a grid which will not read past the data values. The  /COLUMNS=
qualifier can be used when reading multiple variables to specify the number of words separating
the start of each variable:

yes? DEFINE AXIS/X=1:500:1  xaxis
yes? DEFINE GRID/X=XAXIS  mygrid
yes? FILE/FORMAT=stream/SKIP=1003/GRID=mygrid/VAR=var2  myfile.dat

The argument 1003 is the sum of the 1000 data words in record 1, plus 2 words of record length
information surrounding the data values in record 1 (variable var1), plus 1 word of record
information preceding the data in record 2.

4.2  Unstructured binary files

Files without imbedded record length information are created by FORTRAN programs using
ACCESS="DIRECT" in OPEN statements and by C programs. Suppose “dddd” represents a
4-byte data value. Then unstructured binary files are simply:

dddd dddd dddd dddd dddd dddd ... 



26  CHAPTER 2

Such files are also referred to as “direct access binary” files. The structure of the records is
implied by the program accessing the data.  FORTRAN code which generates a direct access
binary file might look as follows:

REAL*4 MYVAR(10,5)
...
C Use RECL=40 for machines that specify in bytes

OPEN(UNIT=20, FILE="myfile.dat", ACCESS="DIRECT", RECL=10)
...
DO 100 j = 1, 5
100 WRITE (20,REC=j) (MYVAR(i,j),i=1,10)
....

Use the following Ferret commands to read variable “myvar” from this file:

yes? DEFINE AXIS/X=1:10:1 x10
yes? DEFINE AXIS/Y=1:5:1 y5
yes? DEFINE GRID/X=x10/Y=y5 g10x5
yes? FILE/VAR=MYVAR/GRID=g10x5/FORMAT=stream  myfile.dat

5 ASCII DATA

To access ASCII data files sets use

yes? SET DATA/EZ   ASCII_file_name    or equivalently
yes? FILE   ASCII_file_name

The following are qualifiers to SET DATA/EZ or FILE:

Qualifier Description
/VARIABLES  names the variables in the file

 /TITLE associates a title with the data set
 /GRID indicates multi-dimensional data and  units
 /COLUMNS  tells how many data values are in each record
 /FORMAT  specifies the format of the file
 /SKIP  skips initial records of the file

/ORDER specifies order of axes (which varies fastest)

Use command SET VARIABLE to individually customize the variables.



DATA SETS  27

5.1  Reading ASCII files

Below are several examples of reading ASCII data properly. (Uniform record length,
FORTRAN-structured binary data are read similarly with the addition of the qualifier
/FORMAT= "unf". See Chapter 2 section “Binary Data” for other binary types). First, we look
briefly at the relationship between Ferret and standard matrix notation. 

Linear algebra uses established conventions in matrix notation. In a matrix A(i,j), the first index
denotes a (horizontal) row and the second denotes a (vertical) column.

A11 A12 A13 ... A1n
A21 A22 A23 ... A2n Matrix A(i,j)
...

Am1 Am2 Am3 ... Amn

X-Y graphs follow established conventions as well, which are that X is the horizontal axis (and
in a geographical context, the longitude axis) and increases to the right, and Y is the vertical
axis (latitude) and increases upward (Ferret provides the /DEPTH qualifier to explicitly
designate axes where the vertical axis convention is reversed). 

In Ferret, the first index of a matrix, i, is associated with the first index of an (x,y) pair, x.
Likewise, j corresponds to y. Element Am2, for example, corresponds graphically to x=m  and
y=2. 

By default, Ferret stores data in the same manner as FORTRAN—the first index varies fastest.
Use the qualifier /ORDER to alter this behavior. The following examples demonstrate how
Ferret handles matrices.

Example 1—1 variable, 1 dimension

1a) Consider a data set containing the height of a plant at regular time intervals, listed in a
single column:

2.3
3.1
4.5
5.6
. . .

To access, name, and plot this variable properly, use the commands

yes? FILE/VAR=height plant.dat
yes? PLOT height



28  CHAPTER 2

1b) Now consider the same data, except listed in four columns:

2.3   3.1   4.5   5.6
5.7   5.9   6.1   7.2
. . .

Because there are more values per record (4) than variables (1), use:

yes? FILE/VAR=height/COLUMNS=4 plant4.dat
yes? PLOT height

Example 2—2 variables, 1 dimension

2a) Consider a data set containing the height of a plant and the amount of water given to the
plant, measured at regular time intervals:

2.3 20.4
3.1 31.2
4.5 15.7
5.6 17.3
. . .

To read and plot this data use

yes? FILE/VAR="height,water" plant_wat.dat
yes? PLOT height,water

2b) The number of columns need be specified only if the number of columns exceeds the
number of variables. If the data are in six columns

2.3 20.4   3.1 31.2   4.5 15.7   
5.6 17.3 ...

use

yes? FILE/VAR="height,water"/COLUMNS=6 plant_wat6.dat
yes? PLOT height,water

Example 3—1 variable, 2 dimensions

3a) Consider a different situation: a greenhouse with three rows of four plants and a file with
a single column of data representing the height of each plant at a single time (successive values
represent plants in a row of the greenhouse):



DATA SETS  29

3.1
2.6
5.4
4.6
3.5
6.1
. . .

If we want to produce a contour plot of height as a function of position in the greenhouse, axes
will have to be defined:

yes? DEFINE AXIS/X=1:4:1 xplants
yes? DEFINE AXIS/Y=1:3:1 yplants
yes? DEFINE GRID/X=xplants/Y=yplants gplants
yes? FILE/VAR=height/GRID=gplants greenhouse_plants.dat
yes? CONTOUR height

When reading data the first index, x, varies fastest.  Schematically, the data will be assigned as
follows:

        x=1        x=2         x=3        x=4   
y=1     3.1        2.6         5.4        4.6 
y=2     3.5        6.1 . . .
y=3    . . .

3b) If the file in the above example has, instead, 4 values per record:

3.1   2.6   5.4   4.6
3.5   6.1  . . .

then add /COLUMNS=4 to the FILE command:

yes? FILE/VAR=height/COLUMNS=4/GRID=gplants greenhouse_plants.dat

Example 4—2 variables, 2 dimensions

Like Example 3, consider a greenhouse with three rows of four plants each and a data set with
the height of each plant and the length of its longest leaf:

3.1     0.54
2.6     0.37
5.4     0.66
4.6     0.71
3.5     0.14
6.1     0.95
.        .
.        .



30  CHAPTER 2

Again, axes and a grid must be defined:

yes? DEFINE AXIS/X=1:4:1 xht_leaf
yes? DEFINE AXIS/Y=1:3:1 Yht_leaf
yes? DEFINE GRID/X=xht_leaf/Y=yht_leaf ght_leaf
yes? FILE/VAR="height,leaf"/GRID=ght_leaf greenhouse_ht_lf.dat
yes? SHADE height
yes? CONTOUR/OVER leaf

The above commands create a color-shaded plot of height in the greenhouse, and overlay a
contour plot of leaf length. Schematically, the data will be assigned as follows:

        x=1         x=2         x=3         x=4 
      ht ,  lf    ht ,  lf
y=1   3.1, 0.54   2.6, 0.37   5.4, 0.66   4.6, 0.71
y=2   3.5, 0.14   6.1, 0.95 . . . 
y=3   . . .

Example 5—2 variables, 3 dimensions (time series)

Consider the same greenhouse with height and leaf length data taken at twelve different times.
The following commands will create a three-dimensional grid and a plot of the height and leaf
length versus time for a specific plant.

yes? DEFINE AXIS/X=1:4:1 xplnt_tm
yes? DEFINE AXIS/Y=1:3:1 yplnt_tm
yes? DEFINE AXIS/T=1:12:1 tplnt_tm
yes? DEFINE GRID/X=xplnt_tm/Y=yplnt_tm/T=tplnt_tm gplant2
yes? FILE/VAR="height,leaf"/GRID=gplant2 green_time.dat
yes? PLOT/X=3/Y=2 height, leaf

Example 6—1 variable, 3 dimensions, permuted order (vertical profile)

Consider a collection of oceanographic measurements made to a depth of 1000 meters. Suppose
that the data file contains only a single variable, salt. Each record contains a vertical profile (11
values) of a particular x,y (long,lat) position. Supposing that successive records are successive
longitudes, the data file would look as follows (assume the equivalencies are not in the file):

            z=0  z=10  z=20 . . .
x=30W,y=5S  35.89 35.90 35.93 35.97 36.02 36.05 35.96 35.40 35.13 34.89 34.72
x=29W,y=5S  35.89 35.91 35.94 35.97 36.01 36.04 35.94 35.39 35.13 34.90 34.72
            . . .

Use the qualifier /DEPTH= when defining the Z axis to indicate positive downward, and
/ORDER when setting the data set to properly read in the permuted data:

yes? DEFINE AXIS/X=30W:25W:1/UNIT=degrees salx
yes? DEFINE AXIS/Y=5S:5N:1/UNIT=degrees saly



DATA SETS  31

yes? DEFINE AXIS/Z=0:1000:100/UNIT=meters/DEPTH salz
yes? DEFINE GRID/X=salx/Y=saly/Z=salz salgrid
yes? FILE/ORDER=zxy/GRID=salgrid/VAR=sal/COL=11 sal.dat

6  TRICKS TO READING BINARY AND ASCII FILES

Since binary and ASCII files are found in a bewildering variety of non-standardized formats
a few tricks may help with reading difficult cases.

• Sometimes variables are interleaved with data axes in unstructured (stream) binary files. A
simple trick is to read them all as a single variable, say, “Vall,” in which the sequence of
variables in the file V1, V2, V3, ... is regarded as an axis of the grid. Then extract the
variables by defining V1 = Vall[I=1] (if the I axis was used, else J=1, K=1, or L=1) as
needed.

• In some ASCII files the variables are presented as blocks—a full grid of variable 1, then a
full grid of variable 2, etc. These files may be read using Unix soft links so that the same file
can be opened as several Ferret data sets. Then use the FILE command to point separately
to each soft link using the /SKIP qualifier to locate the correct starting point in the file for
each variable. For example,

Unix commands:

ln -s my_dat.v1 my_data
ln -s my_dat.v2 my_data
ln -s my_dat.v3 my_data

Ferret commands:

yes? FILE/SKIP=0/VAR=v1 my_dat.v1
yes? FILE/SKIP=100/VAR=v2 my_dat.v2
yes? FILE/SKIP=200/VAR=v3 my_dat.v3

• If an ASCII file contains a repeating sequence of records try describing the entire sequence
using a single FORTRAN FORMAT statement. An example of such a statement would be
(3F8.4,2(/5F6.2)). The slash character and the nested parentheses allow multi-record groups
to appear as a single format. Note that the /COLUMNS qualifier should reflect the total
number of columns in the repeating group of records.

• If an ASCII or binary file contains gridded data in which the order of axes is not X-Y-Z-T
read the data in (which results in the wrong axis ordering) and use the LIST/ORDER= to
permute the order on output. The resulting file will have the desired axis ordering. 

• If the times and geographical coordinate locations of the grid are inter-mixed with the
dependent variables in the file then 1) issue a FILE command to read the coordinates only;



32  CHAPTER 2

2) use DEFINE AXIS/FROM_DATA to define axes and DEFINE GRID to define the grid;
3) use FILE/GRID=mygrid to read the file again.



VARIABLES AND EXPRESSIONS    33

Chapter 3: VARIABLES AND EXPRESSIONS

1  VARIABLES

Variables are of 3 kinds:
1)  file variables (read from disk files)
2)  user-defined variables (defined by the user with LET command)
3)  diagnostic variables (for GFDL/MOM Pacific ocean model runs)

All 3 types may be accessed identically in all commands and expressions.

All variables, regardless of kind, possess the following associated information:
1) grid—the underlying coordinate structure
2) units
3) title
4) title modifier (additional explanation of variable)
5) flag value for missing data points

Use the commands SHOW DATA, SHOW VARIABLES and SHOW VARIABLES/
DIAGNOSTIC to examine the available variables of each type, respectively.

The pseudo-variables I, J, K, L, X, Y, Z, T and others may be used to refer to the underlying
grid locations and characteristics and to create abstract variables. 

1.1 Variable syntax

Variables in Ferret are referred to by names with optional qualifying information appended in
square brackets. See DEFINE VARIABLE for a discussion of legal variable names.

The information that may be included in the square brackets includes

D=data_set_name_or_number ! indicate the data set
G=grid_or_variable_name ! request a regridding
X=,Y=,Z=,T=,I=,J=,K=,L= ! specify region and transformation

See Chapter 4 on Regions for more discussion of the syntax of region qualifiers and
transformations.

Some examples of valid variable syntax are

myvar ! data set and region as per current context
myvar[D=2] ! myvar from data set number 2 (see SHOW DATA)
myvar[D=a_dset] ! myvar from data set a_dset.cdf or a_dset.des
myvar[D=myfile.txt] ! myvar from file myfile.txt
myvar[G=gridname] ! myvar regridded to grid gridname



34    CHAPTER 3

myvar[G=var2] ! myvar regridded to the grid of var2
! which is in the same data set as myvar

myvar[G=var2[D=2]] ! myvar regridded to the grid of var2
! which is in data set number 2

myvar[GX=axisname] ! myvar regridded to a dynamic grid which
! has X axis axisname

myvar[GX=var2] ! myvar regridded to a dynamic grid which
! has the X axis of variable var2

1.2  File variables

File variables are stored in disk files. Input data files can be ASCII, binary, NetCDF, or TMAP-
formatted (see Chapter 2, Data Sets).  File variables are made available with the SET DATA
command.

1.3  Pseudo-variables

Pseudo-variables are variables whose values are coordinates or coordinate information from a
grid. Valid pseudo-variables are

X – x axis coordinates I – x axis subscripts XBOX – size of x grid box
Y – y axis coordinates J – y axis subscripts YBOX – size of y grid box
Z – z axis coordinates K – z axis subscripts ZBOX – size of z grid box
T – t axis coordinates L – t axis subscripts TBOX – size of t grid box

A grid box is a concept needed for some transformations along an axis; it is the length along
an axis that belongs to a single grid point and functions as a weighting factor during
integrations and averaging transformations.
 
The pseudo-variables I, J, K, and L are subscripts; that is, they are a coordinate system for
referring to grid locations in which the points along an axis are regarded as integers from 1 to
the number of points on the axis. This is clear if you look at one of the sample data sets:

yes? SET DATA levitus_climatology
yes? SHOW DATA
    1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des  (default)
       Levitus annual climatology (1x1 degree)
             diagnostic variables: NOT available
      name   title                       I         J         K        L
      TEMP   TEMPERATURE                 1:360     1:180     1:20      1:1
        ... on grid GLEVITR1   X=20E:20E(380)  Y=90S:90N  Z=0m:5000m  
      SALT   SALINITY                    1:360     1:180     1:20      1:1
        ... on grid GLEVITR1   X=20E:20E(380)  Y=90S:90N  Z=0m:5000m

time-independent data file: levitus_climatology.001



VARIABLES AND EXPRESSIONS    35

We see that there are 20 points along the z-axis (1:20 under K), for example, and that the z-axis
coordinate values range from 0 meters to 5000 meters. Pseudo-variables depend only on the
underlying grid, and not on the variables (in this case, temperature and salt). 
 
Examples:  Pseudo-variables

  1) yes? LIST/I=1:10 I

  2) yes? LET xflux = u * vbox[G=u]

1.4  User-defined variables

New variables can be defined from existing variables and from abstract mathematical quantities
(such as COS(latitude)) with command DEFINE VARIABLE (alias LET).

See command DEFINE VARIABLE and command LET in the Commands Reference.

Examples: User-defined variables

1) yes? LET/TITLE="Surface Relief x1000 (meters)" r1000=rose/1000

2) yes? LET/TITLE="Temperature Deviation" tdev=temp - temp[Z=@ave]

1.5  Abstract variables

Ferret can be used to manipulate abstract mathematical quantities such as SIN(x)  or  EXP(k*t)
—quantities that are independent of file variable values. Such quantities are referred to as
abstract expressions. 

Example:  Abstract variables

Contour the function
COS(a*Y)/EXP(b*T)  where a=0.25 and b=-0.02

over the range
Y=0:45 (degrees) and  T=1:100 (hours)

with a resolution of
0.5 degree on the Y axis and 2 hours on the T axis.

Quick and dirty solution:
yes? CONTOUR COS(0.25*Y[Y=0:45:0.5])/EXP(-0.2*T[T=1:100:2])



36    CHAPTER 3

Figure 7

Nicer (Figure 7; plot is documented with
correct units and titles):

yes? DEFINE AXIS/Y=0:45:0.5
      /UNIT=DEGREES yax
yes? DEFINE AXIS/T=1:100:2
      /UNIT=HOURS tax
yes? DEFINE GRID/T=tax/Y=yax
my_grid
yes? SET GRID my_grid
yes? LET a=0.25
yes? LET b=-0.02
yes? CONTOUR/COS(a*Y)/EXP(b*T)

See Chapter 4, section “Grids,” for more
information on grids.

1.6 Missing value flags

Data values that are absent or undefined for mathematical reasons (e.g., 1/0) will be represented
in Ferret with a missing value flag. In SHADE outputs a missing value flag embedded at some
point in a variable will result in a transparent rectangular hole equal to the size of the grid cell
of the missing value. In a CONTOUR or FILL plot it will result in a larger hole—extending
past the grid box edge to the coordinate location of the next adjacent non-missing point—since
contour lines cannot be interpolated between a missing value and its neighboring points. In the
output of the LIST command for cases where the /FORMAT qualifier is not used the missing
value will be represented by 4 dots (“....”). For cases where
LIST/FORMAT=FORTRAN-format is used the numerical value of the missing value flag will
be printed using the format provided.

1.6.1  Missing values in input files

Ferret does not impose a standard for missing value flags in input data sets; each variable in
each data set may have its own distinct missing value flag(s). The flag(s) actually in use by a
data set may be viewed with the SHOW DATA/VARIABLES command.  If no missing value
flag is specified for a data set Ferret will assume a default value of –1.E+34. 

For EZ input data sets, either binary or ASCII, the missing data flag may be specified with the
SET VARIABLE/BAD= command. A different value may be specified for each variable in the
data set.

For NetCDF input data sets the missing value flag(s) is indicated by the values of the attributes
“missing_value” and “_FillValue.” If both attributes are defined to have different values both
will be recognized and used by Ferret as missing value indicators, however the occurrences of



VARIABLES AND EXPRESSIONS    37

_FillValue will be replaced with the value of missing_value as the data are read into Ferret’s
memory cache so that only a single missing value flag is apparent inside of Ferret. The
command SET VARIABLE/BAD= can also be applied to NetCDF variables, thereby
temporarily setting a user-imposed value for _FillValue. 

1.6.2  Missing values in user-defined variables

User-defined variables may in general be defined as expressions involving multiple variables.
The component variables need not in general agree in their choice of missing value flags. The
result variable will inherit the bad value flag of the first variable in the expression. If the first
component in the expression is a constant or a pseudo-variable, then Ferret imposes its default
missing value flag of –1.E+34.

The function MISSING(variable,replacement) provides a limited control over the choice of
missing values in user-defined variables. Note, however, that while the MISSING function will
replace the missing values with other values it will not change the missing value flag. In other
words, the replacement values will no longer be regarded as missing.

1.6.3  Missing values in output NetCDF files

Values flagged as missing inside Ferret will be faithfully transferred to output files—no
substitution will occur as the data are written. In the case of NetCDF output files both of the
attributes missing_value, and _FillValue will be set equal to the missing value flag.

Under some circumstances it is desirable to save a user-defined variable in a NetCDF file and
then to redefine that variable and to append further output. (An example of this is the process
of consolidating several files of input, say, moored measurements, into a gridded output.) The
process of appending will not change any of the NetCDF attributes—neither long_name (title),
units, nor missing_value or _FillValue. If the subsequent variable definitions do not agree in
their choice of missing value flags the resulting output may contain multiple missing value flags
that will not be properly documented.

An easy “trick” that avoids this situation is to begin all of the variable definitions with an
addition of zero, “LET var = 0 + ....” The addition of zero will not affect the value of the output
but it will guarantee that a missing value flag of –1.E+34 will be consistently used. Of course,
you will want to use the SET VARIABLE/TITLE= command in conjunction with this
approach. 

1.6.4   Displaying the missing value flag

If the LIST command is used, missing values are, by default, displayed as “....”  To examine
the flag as a numerical value, use LIST/FORMAT=(E) (or some other suitable format).



38    CHAPTER 3

2  EXPRESSIONS

Throughout this manual, Ferret commands that require and manipulate data are informally
called “action” commands. These commands are:

PLOT
CONTOUR
FILL  (alias for CONTOUR/FILL)
SHADE
VECTOR
WIRE
LIST
STAT
LOAD

Action commands may use any valid algebraic expression involving constants, operators
(+,–,*,...), functions (SIN, MIN, INT,...), pseudo-variables (X, TBOX, ...) and other variables.

A variable name may optionally be followed by square brackets containing region,
transformation, data set, and regridding qualifiers. For example, “temp”, “salt[D=2]”,
“u[G=temp”], “u[Z=0:200@AVE]”.

The expressions may also contain a syntax of:

IF  condition  THEN  expression_1  ELSE  expression_2

Examples:  Expressions

  i) temp ^ 2

temperature squared

 ii) temp - temp[Z=@AVE]

for the range of Z in the current context, the temperature deviations from the vertical average

iii) COS(Y)

the cosine of the Y coordinate of the underlying grid (by default, the y-axis is implied by the
other variables in the expression)

 iv) IF (vwnd GT vwnd[D=monthly_navy_winds]) THEN vwnd ELSE 0

use the meridional velocity from the current data set wherever it exceeds the value in data
set monthly_navy_winds, zero elsewhere.



VARIABLES AND EXPRESSIONS    39

2.1  Operators

Valid operators are

+
–
*
/
^    (exponentiate)
AND
OR
GT
GE
LT
LE
EQ
NE

2.2 Multi-dimensional expressions

Operators and functions (discussed in the next section, Functions)  may combine variables of
like dimensions or differing dimensions.

If the variables are of like dimension then the result of the combination is of the same
dimensionality as inputs. For example, suppose there are two time series that have data on the
same time axis; the result of a combination will be a time series on the same time axis.

If the variables are of unlike dimensionality, then the following rules apply:

1) To combine variables together in an expression they must be “conformable” along each axis.
2) Two variables are conformable along an axis if the number of points along the axis is the

same, or if one of the variables has only a single point along the axis (or, equivalently, is
normal to the axis).

3) When a variable of size 1 (a single point) is combined with a variable of larger size, the
variable of size 1 is “promoted” by replicating its value to the size of the other variable.

4) If variables are the same size but have different coordinates, they are conformable, but Ferret
will issue a message that the coordinates on the axis are ambiguous. The result of the
combination inherits the coordinates of the FIRST variable encountered that has more than
a single point on the axis.

Examples: 

Assume a region J=50/K=1/L=1 for examples 1 and 2. Further assume that variables v1 and v2
share the same x-axis. 



40    CHAPTER 3

1) yes? LET newv = v1[I=1:10] + v2[I=1:10] !same dimension (10)

2) yes? LET newv = v1[I=1:10] + v2[I=5] !newv has length of v1 (10)

3) We want to compare the salt values during the first half of the year with the values for the
second half. Salt_diff will be placed on the time coordinates of the first variable—L=1:6.
Ferret will issue a warning about ambiguous coordinates.

yes? LET salt_diff = salt[L=1:6] - salt[L=7:12]

4) In this example the variable zero will be promoted along each axis.

yes? LET zero = 0 * (i+j)
yes? LIST/I=1:5/J=1:5  zero !5X5 matrix of 0's

5) Here we calculate density; salt and temp are on the same grid. This expression is an XYZ
volume of points (100×100×10) of density at 10 depths based on temperature and salinity
values at the top layer (K=1).

yes? SET REGION/I=1:100/J=1:100
yes? LET dens = rho_un (temp[K=1], salt[K=1], Z[G=temp,K=1:10]

2.3  Functions

Valid functions are

Name      #Args Description
MAX 2 Compares two fields and selects the point by point maximum. 

MAX( temp[K=1], temp[K=2] )  returns the maximum temperature
comparing the first 2 z-axis levels

MIN 2 Compares two fields and selects the point by point minimum.
MIN( airt[L=10], airt[L=9] )   gives the minimum air
temperature comparing two timesteps

INT 1 Truncates values to integers.
INT( salt )   returns the integer portion of variable “salt” for all
values in the current region

ABS 1 Absolute value.
ABS( U )   takes the absolute value of U for all points within the
current region

EXP 1 e —Exponential; argument is real.  X

EXP( X )  raises e to the power X for all points within the current
region  



VARIABLES AND EXPRESSIONS    41

LN 1 log X—Natural logarithm; argument is real.  e

LN( X )  takes the natural logarithm of X for all points within the
current region

 
LOG 1 log X—Common logarithm; argument is real. 10

LOG( X )  takes the common logarithm of X for all points within the
current region

SIN 1 Trigonometric sine; argument is in radians and is treated modulo
2*pi.  
SIN( X )  computes the sine of X for all points within the current
region 

COS 1 Trigonometric cosine; argument is in radians and is treated modulo
2*pi.  
COS( Y )  computes the cosine of Y for all points within the current
region

TAN 1 Trigonometric tangent; argument is in radians and is treated modulo
2*pi. 
TAN( theta )  computes the tangent of theta for all points within the
current region

ASIN 1 Trigonometric arcsine (-pi/2,pi/2). The result will be flagged as
missing if the absolute value of the argument is greater than 1; result
is in radians.  
ASIN( value )  computes the arcsine of “value” for all points within
the current region

ACOS 1 Trigonometric arccosine (0,pi). The result will be flagged as missing
of the absolute value of the argument greater than 1; result is in
radians. 
ACOS ( va lue )  computes the arccosine of “value” for all points
within the current region

ATAN 1 Trigonometric arctangent (-pi/2,pi/2); result is in radians. 
ATAN( value )  computes the arctangent of “value” for all points
within the current region

ATAN2 2 2-argument trigonometric arctangent of Y/X (-pi,pi); discontinuous
at Y=0. 
ATAN2( X,Y )  computes the 2-argument arctangent of Y/X for all
points within the current region



42    CHAPTER 3

MOD 2 Modulo operation ( arg1 – arg2*[arg1/arg2] ). Returns the remainder
when the first argument is divided by the second. 
MOD( X,2 )  computes the remainder of X/2 for all points within the
current region  

DAYS1900 3 DAYS1900(year,month,day)  computes the number of days since 1
Jan 1900. This function is useful in converting dates to Julian days.

MISSING 2 Replaces missing values in the first argument (multi-dimensional
variable) with the second argument; the second argument may be any
conformable variable. 
MISSING( temp, -999 )   replaces missing values in temp with 
–999

MISSING( sst, temp[D=coads_climat ology] )   replaces missing
sst values with temperature from the COADS climatology

IGNORE0 1 Replaces zeros in a variable with the missing value flag for that
variable.  
IGNORE0( s alt )  replaces zeros in salt with the missing value flag

RANDU 1 Generates a grid of uniformly distributed [0,1] pseudo-random
values. The first valid value in the field is used as the random number
seed. Values that are flagged as bad remain flagged as bad in the
random number field.

RANDU( temp[I=105:135,K=1:5] )   generates a field of uniformly
distributed random values of the same size and shape as the field
“temp[I=105:135,K=1:5]” using temp[I=105,k=1] as the pseudo-
random number seed.  

RANDN 1 Generates a grid of normally distributed pseudo-random values. As
above, but normally distributed rather than uniformly distributed.

RHO_UN 3 Calculates rho (density kg/m^3) from salt (psu), temperature (deg C)
and pressure (decibars) using the 1980 UNESCO International
Equation of State (IES80).  The routine uses the high pressure
equation of state from Millero et al. (1980) and the one-atmosphere
equation of state from Millero and Poisson (1981) as reported in Gill
(1982). The notation follows Millero et al. (1980) and Millero and
Poisson (1981). 
RHO_UN( salt, temp, Z )

THETA_FO 4 Calculates local potential temperature field at salt (psu), temperature
(deg C), pressure (decibars) and specified reference pressure. This



VARIABLES AND EXPRESSIONS    43

calculation uses Bryden (1973) polynomial for adiabatic lapse rate
and Runge-Kutta 4th order integration algorithm. References: 
Bryden, H., 1973, Deep-Sea Res., 20, 401–408
Fofonoff, N.M, 1977, Deep-Sea Res., 24, 489–491.
THETA_FO( salt, temp, Z, Z_reference )

2.4  Transformations

Transformations (e.g., averaging, integrating, etc.) may be specified along the axes of a
variable. Some transformations (e.g., averaging) reduce a range of data to a point; others (e.g.,
differentiating) retain the range.

When transformations are specified along more than one axis of a single variable the order of
execution is X axis first, then Y then Z then T.

Example syntax:  TEMP[Z=0:100@LOC:20]   (depth at which temp has value 20)

Valid transformations are

Default
    Transform Argument Description

@DIN definite integral (weighted sum)
 @IIN indefinite integral (weighted running sum)

@AVE average
@VAR unweighted variance
@MIN minimum
@MAX maximum
@SHF 1 pt shift
@SBX 3 pt boxcar smoothed
@SBN 3 pt binomial smoothed
@SHN 3 pt Hanning smoothed
@SPZ  3 pt Parzen smoothed
@SWL 3 pt Welch smoothed
@DDC centered derivative
@DDF forward derivative
@DDB backward derivative
@NGD number of valid points
@NBD number of bad (invalid) points flagged
@SUM unweighted sum
@RSUM running unweighted sum
@FAV 3 pt fill missing values with average
@FLN:n 1 pt fill missing values by linear interpolation
@FNR:n 1 pt fill missing values with nearest point 
@LOC 0 coordinate of ... (e.g., depth of 20 degrees)
@WEQ “weighted equal” (integrating kernel)



44    CHAPTER 3

The command SHOW TRANSFORM will produce a list of currently available transformations.

Examples: Transformations

u[Z=0:100@AVE] –  average of u between 0 and 100 in Z
sst[T=@SBX:10] –  box-car smooths sst with a 10 time point filter
tau[L=1:25@DDC] –  centered time derivative of tau 
v[L=@IIN] –  indefinite (accumulated) integral of v
qflux[X=@AVE,Y=@AVE] –  XY area-averaged qflux

2.4.1  General information about transformations

Transformations are normally computed axis by axis; if multiple axes have transformations
specified simultaneously (e.g., U[Z=@AVE,L=@SBX:10]) the transformations will be applied
sequentially in the order X then Y then Z then T. There are two exceptions to this:  if @DIN
is applied simultaneously to both the X and Y axes (in units of degrees of longitude and
latitude, respectively) the calculation will be carried out on a per-unit-area basis (as a true
double integral) instead of a per-unit-length basis, sequentially. This ensures that the
COSINE(latitude) factors will be applied correctly. The same applies to @AVE simultaneously
on X and Y.

Data that are flagged as invalid are excluded from calculations.

When calculating integrals and derivatives (@IIN, @DIN, @DDC, @DDF, and @DDB) Ferret
attempts to use standardized units for the grid coordinates. If the underlying axis is in a known
unit of length Ferret converts grid box lengths to meters. If the underlying axis is in a known
unit of time Ferret converts grid box lengths to seconds. If the underlying axis is degrees of
longitude a factor of COSINE (latitude) is applied to the grid box lengths in meters.

If the underlying axis units are unknown Ferret uses those unknown units for the grid box
lengths. (If Ferret does not recognize the units of an axis it displays a message to that effect
when the DEFINE AXIS or SET DATA command defines the axis.)  See command DEFINE
AXIS/UNITS in the Commands Reference in this manual for a list of recognized units.

All integrations and averaging are accomplished by multiplying the width of each grid box by
the value of the variable in that grid box—then summing and dividing as appropriate for the
particular transformation.

If integration or averaging limits are given as world coordinates, the grid boxes at the edges of
the region specified are weighted according to the fraction of grid box that actually lies within
the specified region. If the transformation limits are given as subscripts, the full box size of
each grid point along the axis is used—including the first and last subscript given. The region
information that is listed with the output reflects this.



VARIABLES AND EXPRESSIONS    45

Some transformations (derivatives, shifts, smoothers) require data points from beyond the edges
of the indicated region in order to perform the calculation. Ferret automatically accesses this
data as needed. It flags edge points as missing values if the required beyond-edge points are
unavailable (e.g., @DDC applied on the X axis at I=1).

2.4.2  Transformations applied to irregular regions

Since transformations are applied along the orthogonal axes of a grid they lend themselves
naturally to application over “rectangular” regions (possibly in 3 or 4 dimensions). Ferret has
sufficient flexibility, however, to perform transformations over irregular regions.

Suppose, for example, that we wish to determine the average wind speed within an irregularly
shaped region of the globe defined by a threshhold sea surface temperature value. We can do
this through the creation of a mask, as in this example:

yes? SET DATA coads_climatology
yes? SET REGION/l=1/@t ! January in the Tropical Pacific
yes? LET sst28_mask = IF sst GT 28 THEN 1
yes? LET masked_wind_speed = wspd * sst28_mask
yes? LIST masked_wind_speed[X=@AVE,Y=@AVE]

The variable sst28_mask is a collection of 1’s and missing values. Using it as a multiplier on
the wind speed field produces a new result that is undefined except in the domain of interest.

When using masking be aware of these considerations:

• Use undefined values rather than zero’s to avoid contaminating the calculation with zero
values.

• The masked region is composed of rectangles at the level of resolution of the gridded
variables; the mask does NOT follow smooth contour lines. To obtain a smoother mask
it may be desirable to regrid the calculation to a finer grid. 

• Variables from different data sets can be used to mask one another. For example, the
ETOPO60 bathymetry data set can be used to mask regions of land and sea.

2.4.3  General information about smoothing transformations

Ferret provides several transformations for smoothing variables (removing high frequency
variability). These transformations replace each value on the grid to which they are applied with
a weighted average of the surrounding data values along the axis specified. For example, the
expression u[T=@SPZ:3] replaces the value at each (I,J,K,L) grid point of the variable “u” with
the weighted average

u at t = 0.25*(u at t-1) + 0.5*(u at t) + 0.25*(u at t+1)



46    CHAPTER 3

Figure 8

The various choices of smoothing transformations (@SBX, @SBN, @SPZ, @SHN, @SWL)
represent different shapes of weighting functions or “windows” with which the original variable
is convolved. New window functions can be obtained by nesting the simple ones provided. For
example, using the definitions

yes? LET ubox = u[L=@SBX:15]
yes? LET utaper = ubox[L=@SHN:7]

produces a 21-point window whose shape is a boxcar (constant weight) with COSINE
(Hanning) tapers at each end.

Ferret may be used to directly examine the
shape of any smoothing window:
Mathematically, the shape of the smoothing
window can be recovered as a variable by
convolving it with a delta function. In the
example below we examine (PLOT) the
shape of a 15-point Welch window (Figure
8).

! define X axis as [-1,1] by 0.2
yes? GO unit_square
yes? SET REGION/X=-1:1
yes? LET delta = 
      IF X EQ 0 THEN 1 ELSE 0
! convolve delta with Welch window
yes? PLOT delta[I=@SWL:15]

2.4.4  @DIN—definite integral

The transformation @DIN computes the definite integral—a single value that is the integral
between two points along an axis (compare with @IIN). It is obtained as the sum of the
grid_box*variable product at each grid point. Grid points at the ends of the indicated range are
weighted by the fraction of the grid box that falls within the integration interval.

If @DIN is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by indicating a transformation of “@IN4” or “XY integ.”

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@DIN]

In a latitude/longitude coordinate system X=@DIN is sensitive to the COS(latitude) correction.



VARIABLES AND EXPRESSIONS    47

2.4.5 @IIN—indefinite integral

The transformation @IIN computes the indefinite integral—at each subscript of the result it is
the value of the integral from the start value to the upper edge of that grid box. It is obtained
as a running sum of the grid_box*variable product at each grid point. Grid points at the ends
of the indicated range are weighted by the fraction of the grid box that falls within the
integration interval.

Example:

yes? CONTOUR/X=160E:160W/Z=0 u[Y=5S:5N@IIN]

Note 1: The indefinite integral is always computed in the increasing coordinate direction. To
compute the indefinite integral in the reverse direction use

LET reverse_integral = my_var[Y=lo:hi@DIN] - my_var[X=lo:hi@IIN] 

Note 2: In a latitude/longitude coordinate system X=@IIN is sensitive to the COS(latitude)
correction.

Note 3: The result of the indefinte integral is shifted by 1/2 of a grid cell from its “proper”
location. This is because the result at each grid cell includes the integral computed to the upper
end of that cell. (This was necessary in order that var[I=lo:hi@DIN] and var[I=lo:hi@IIN]
produce consistent results.)

To illustrate, consider these commands

yes? LET one = x-x+1
yes? LIST/I=1:3 one[I=@din]
             X-X+1
             X: 0.5 to 3.5 (integrated)
          3.000
yes? LIST/I=1:3 one[I=@iin]
             X-X+1
             indef. integ. on X
 1   / 1:  1.000
 2   / 2:  2.000
 3   / 3:  3.000

The grid cell at I=1 extends from 0.5 to 1.5. The value of the integral at 1.5 is 1.000 as reported
but the coordinate listed for this value is 1 rather than 1.5. Two methods are available to correct
for this 1/2 grid cell shift.

Method 1: correct the result by subtracting the 1/2 grid cell error 

yes? LIST/I=1:3 one[I=@iin] - one/2
             ONE[I=@IIN] - ONE/2



48    CHAPTER 3

 1   / 1:  0.500
 2   / 2:  1.500
 3   / 3:  2.500

Method 2: correct the coordinates by shifting the axis 1/2 of a grid cell

yes? DEFINE AXIS/X=1.5:3.5:1 xshift
yes? LET SHIFTED_INTEGRAL =  one[I=@IIN]
yes? LET corrected_integral = shifted_integral[GX=xshift@ASN]
yes? LIST/I=1:3 corrected_integral
             SHIFTED_INTEGRAL[GX=XSHIFT@ASN]
 1.5 / 1:  1.000
 2.5 / 2:  2.000
 3.5 / 3:  3.000

2.4.6  @AVE—average

The transformation @AVE computes the average weighted by grid box size—a single number
representing the average of the variable between two endpoints.

If @AVE is specified simultaneously on multiple axes the calculation will be performed as a
multiple integration rather than as sequential single integrations. The output will document this
fact by showing @AV4 or “XY ave” as the transformation.

Example:

yes? CONTOUR/X=160E:160W/Y=5S:5N u[Z=0:50@AVE]

Note that the unweighted mean can be calculated using the @SUM and @NGD
transformations.

2.4.7  @VAR—weighted  variance

The transformation @VAR computes the weighted variance of the variable with respect to the
indicated region (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press
et al., 1986).

As with @AVE, if @VAR is applied simultaneously to multiple axes the calculation is
performed as the variance of a block of data rather than as nested 1-dimensional variances.

2.4.8 MIN—minimum

The transformation @MIN finds the minimum value of the variable within the specified axis
range. 
 
Example:

For fixed Z and Y



VARIABLES AND EXPRESSIONS    49

yes? PLOT/T="1-JAN-1982":"1-JAN-1983"    temp[X=160E:160W@MIN]

plots a time series of the minimum temperature found between longitudes 160 east and 160
west.

2.4.9 @MAX—maximum

The transformation @MAX finds the maximum value of the variable within the specified axis
range. See also @MIN.

2.4.10 @SHF:n—shift

The transformation @SHF shifts the data up or down in subscript by the number of points given
as the argument. 

Examples:

u[L=@SHF:2]

associates the value of U[L=3] with the subscript L=1.

u[L=@SHF:1]-U

gives the forward difference of the variable U along the L axis.

2.4.11 @SBX:n—boxcar smoother

The transformation @SBX applies a boxcar window (running mean) to smooth the variable
along the indicated axis. The width of the boxcar is the number of points given as an argument
to the transformation. All points are weighted equally, regardless of the sizes of the grid boxes,
making this transformation best suited to axes with equally spaced points. If the number of
points specified is even, however, @SBX weights the end points of the boxcar smoother as 1/2.

Example: 

yes? PLOT/X=160W/Y=0 u[L=1:120@SBX:5]

The transformation @SBX does not reduce the number of points along the axis; it replaces each
of the original values with the average of its surrounding points. Regridding can be used to
reduce the number of points.

2.4.12 @SBN:n—binomial smoother

The transformation @SBN applies a binomial window to smooth the variable along the
indicated axis. The width of the smoother is the number of points given as an argument to the
transformation. The weights are applied without regard to the widths of the grid boxes, making
this transformation best suited to axes with equally spaced points.



50    CHAPTER 3

Example: 

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@SBN:15]

The transformation @SBN does not reduce the number of points along the axis; it replaces each
of the original values with a weighted sum of its surrounding points. Regridding can be used
to reduce the number of points. The argument specified with @SBN, the number of points in
the smoothing window, must be an odd value; an even value would result in an effective shift
of the data along its axis.

2.4.13 @SHN:n—Hanning smoother

Transformation @SHN applies a Hanning window to smooth the variable along the indicated
axis (ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al.,
1986). In other respects it is identical in function to the @SBN transformation. Note that the
Hanning window used by Ferret contains only non-zero weight values with the window width.
Some interpretations of this window function include zero weights at the end points. Use an
argument of N-2 to achieve this effect (e.g., @SBX:5 is equivalent to a 7-point Hanning
window which has zeros as it first and last weights).

2.4.14 @SPZ:n—Parzen smoother

Transformation @SPZ applies a Parzen window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation.

2.4.15 @SWL:n—Welch smoother

Transformation @SWL applies a Welch window to smooth the variable along the indicated axis
(ref. Numerical Recipes, The Art of Scientific Computing, by William H. Press et al., 1986). In
other respects it is identical in function to the @SBN transformation.

2.4.16 @DDC—centered derivative

The transformation @DDC computes the derivative with respect to the indicated axis using a
centered differencing scheme. The units of the underlying axis are treated as they are with
integrations. If the points of the axis are unequally spaced, note that the calculation used is still
(F  – F ) / (X  – X ) . i+1  i-1   i+1  i-1

Example: 

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDC]

2.4.17 @DDF—forward derivative



VARIABLES AND EXPRESSIONS    51

The transformation @DDF computes the derivative with respect to the indicated axis. A
forward differencing scheme is used. The units of the underlying axis are treated as they are
with integrations. 

Example: 

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDF]

2.4.18 @DDB—backward derivative

The transformation @DDF computes the derivative with respect to the indicated axis. A
backward differencing scheme is used. The units of the underlying axis are treated as they are
with integrations. 

Example:

yes? PLOT/X=160W/Y=0/Z=0 u[L=1:120@DDB]

2.4.19 @NGD—number of good points

The transformation @NGD computes the number of good (valid) points of the variable with
respect to the indicated axis. Use @NGD in combination with @SUM to determine the number
of good points in a multi-dimensional region.

Note that, as with @VAR, when @NGD is applied simultaneously to multiple axes the
calculation is applied to the entire block of values rather than to the individual axes. 

2.4.20 @NBD—number of bad points

The transformation @NBD computes the number of bad (invalid) points of the variable with
respect to the indicated axis. Use @NBD in combination with @SUM to determine the number
of bad points in a multi-dimensional region.

Note that, as with @VAR, when @NBD is applied simultaneously to multiple axes the
calculation is applied to the entire block of values rather than to the individual axes. 

2.4.21 @SUM—unweighted sum

The transformation @SUM computes the unweighted sum (arithmetic sum) of the variable with
respect to the indicated axis. This transformation is most appropriate for regions specified by
subscript. If the region is specified in world coordinates, the edge points are not weighted—they
are wholly included in or excluded from the calculation, depending on the location of the grid
points with respect to the specified limits.



52    CHAPTER 3

2.4.22 @RSUM—running unweighted sum

The transformation @RSUM computes the running unweighted sum of the variable with
respect to  the indicated axis. @RSUM is to @IIN as @SUM is to @DIN. The treatment of
edge points is identical to @SUM.

2.4.23 @FAV:n—averaging filler

The transformation @FAV fills holes (values flagged as invalid) in variables with the average
value of the surrounding grid points along the indicated axis. The width of the averaging
window is the number of points given as an argument to the transformation. All of the
surrounding points are weighted equally, regardless of the sizes of the grid boxes, making this
transformation best suited to axes with equally spaced points. If the number of points specified
is even, however, @FAV weights the end points of the filling region by 1/2. If any of the
surrounding points are invalid they are omitted from the calculation. If all of the surrounding
points are invalid the hole is not filled.

Example: 

yes? CONTOUR/X=160W:160E/Y=5S:0 u[X=@FAV:5]

2.4.24 @FLN:n—linear interpolation filler

The transformation @FLN:n fills holes in variables with a linear interpolation from the nearest
non-missing surrounding point. n specifies the number of points beyond the edge of the
indicated axis limits to include in the search for interpolants (default n = 1). Unlike @FAV,
@FLN is sensitive to unevenly spaced points and computes its linear interpolation based on the
world coordinate locations of grid points.

2.4.25 @FNR:n—nearest neighbor filler

The transformation @FNR:n is similar to @FLN:n, except that it replicates the nearest point
to the missing value. In the case of points being equally spaced around the missing point, the
mean value is used.

2.4.26 @LOC—location of

The transformation @LOC accepts an argument value—the default value is zero if no argument
is specified. The transformation @LOC finds the single location at which the variable first
assumes the value of the argument. The result is in units of the underlying axis. Linear
interpolation is used to compute locations between grid points. If the variable does not assume
the value of the argument within the specified region the @LOC transformation returns an
invalid data flag.



VARIABLES AND EXPRESSIONS    53

For example, temp[Z=0:200@LOC:18] finds the location along the Z axis (often depth in
meters) at which the variable “temp” (often temperature) first assumes the value 18, starting at
Z=0 and searching to Z=200. 

yes? CONTOUR/X=160E:160W/Y=10S:10N    temp[Z=0:200@LOC:18]

produces a map of the depth of the 18-degree isotherm. See also the General Information
section in this chapter.

Note that the transformation @LOC can be used to locate non-constant values, too, as the
following example illustrates:
 
Example: locating non-constant values

Determine the depth of maximum salinity.

yes? LET max_salt = salt[Z=@MAX]
yes? LET zero_at_max = salt - max_salt
yes? LET depth_of_max = zero_at_max[Z=@LOC:0]

2.4.27 @WEQ—weighted equal; integration kernel
 
 The @WEQ (“weighted equal”) transformation is the subtlest and arguably the most powerful
transformation within Ferret. It is a generalized version of @LOC; @LOC always determines
the value of the axis coordinate (the variable X, Y, Z, or T) at the points where the gridded field
has a particular value. More generally, @WEQ can be used to determine the value of any
variable at those points. 

Like @LOC, the transformation @WEQ finds the location along a given axis at which the
variable is equal to the given (or default) argument. For example, V1[Z=@WEQ:5] finds the
Z locations at which V1 equals “5”. But whereas @LOC returns a single value (the linearly
interpolated axis coordinate values at the locations of equality) @WEQ returns instead a field
of the same size as the original variable. For those two grid points that immediately bracket  the
location of the argument, @WEQ returns interpolation coefficients. For all other points it
returns missing value flags. If the value is found to lie identically on top of a grid point an
interpolation coefficient of 1 is returned for that point alone.

Example 1

yes? LET v1 = X/4
yes? LIST/X=1:6 v1, v1[X=@WEQ:1], v1[X=@WEQ:1.2]
 



54    CHAPTER 3

 X     v1    @WEQ:1  @WEQ:1.2
 -   -----    -----   -----
 1:  0.250    ....     ....
 2:  0.500    ....     ....
 3:  0.750    ....     ....
 4:  1.000   1.000   0.2000
 5:  1.250    ....   0.8000
 6:  1.500    ....     ....

The resulting field can be used as an “integrating kernel,” a weighting function that when
multiplied by another field and integrated will give the value of that new field at the desired
location.

Example 2 

Using variable v1 from the previous example, suppose we wish to know the value of the
function X^2 (X squared) at the location where variable v1 has the value 1.2. We can determine
it as follows:

yes? LET x_squared = X^2
yes? LET integrand = x_squared * v1[X=@WEQ:1.2]
yes? LIST/X=1:6 integrand[X=@SUM] !Ferret output below
           X_SQUARED * V1[X=@WEQ:1.2]
           X: 1 to 6 (summed)
        23.20

Notice that 23.20 = 0.8 * (5^2) + 0.2 * (4^2)

Below are two “real world” examples which  produce fully labeled plots.

Example 3: salinity on an isotherm

Use the Levitus climatology to contour the salinity of the Pacific Ocean along the 20-degree
isotherm (Figure 9). 

yes? SET DATA levitus_climatology ! annual sub-surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N   ! Pacific Ocean
yes? LET isotherm_20 = temp[Z=@WEQ:20] ! depth kernel for 20 degrees
yes? LET integrand_20 = salt * isotherm_20
yes? SET VARIABLE/TITLE="S alinity on the 20 degree isotherm" integrand_20
yes? PPL CONSET .12 !contour label size (def. .08)
yes? CONTOUR/LEV=(33,37,.2) integrand_20[Z=@SUM]
yes? GO fland !continental fill



VARIABLES AND EXPRESSIONS    55

Figure 9

Example 4: month with warmest sea surface temperatures

Use the COADS data set to determine the month in which the SST is warmest across the Pacific
Ocean. In this example we use the same principles as above to create an integrating kernel on
the time axis. Using this kernel we determine the value of the time step index (which is also the
month number, 1–12) at the time of maximum SST (Figure 10).

yes? SET DATA coads_climatology        ! monthly surface climatology
yes? SET REGION/X=100E:50W/Y=45S:45N   ! Pacific Ocean
yes? SET MODE CAL:MONTH
yes? LET zero_at_warmest = sst - sst[l=@max]
yes? LET integrand = L[G=s st] * zero_at_warmest[L=@WEQ]  ! "L" is 1 to 12
yes? SET VARIABLE/TITLE="Month of warmest SST" integrand
yes? SHADE/L=1:12/PAL=inverse_grayscale integrand[L=@SUM]



56    CHAPTER 3

Figure 10

2.4.28 @ITP—interpolate

The @ITP tranformation provides the same linear interpolation calculation that is turned on
modally with SET MODE INTERPOLATE but with a higher level of control, as @ITP can be
applied selectively to each axis. @ITP may be applied only to point locations along an axis.
The result is the linear interpolation based on the adjoining values. For example, for a Z axis
with points at Z=0, 10, 20,  ...

V[Z=4@ITP]     will compute     0.6 * V[Z=0] + 0.4 * V[Z=10]

2.5  IF-THEN logic (“masking”)

Ferret expressions can contain embedded IF-THEN-ELSE logic. The syntax of the IF-THEN
logic is simply (by example)

LET a = IF a1 GT b THEN a1 ELSE a2

(read as “if a1 is greater than b then a1 else a2”).

This syntax is especially useful in creating masks that can be used to perform calculations over
regions of arbitrary shape. For example, we can compute the average air-sea temperature
difference in regions of high wind speed using this logic:

SET DATA coads_climatology
SET REGION/X=100W:0/Y=0:80N/T=15-JAN
LET fast_wind = IF wspd GT 10 THEN 1
LET tdiff = airt - sst
LET fast_tdiff = tdiff * fast_wind



VARIABLES AND EXPRESSIONS    57

3  EMBEDDED EXPRESSIONS

Ferret supports “immediate mode” mathematical expressions—that is, numerical expressions
that may be embedded anywhere within a command line. These expressions are evaluated
immediately by Ferret—before the command itself is parsed and executed. Immediate mode
expressions are enclosed in grave acccents, the same syntax used by the Unix C shell. Prior to
parsing and executing the command Ferret will replace the full grave accent expression,
including the accent marks, with an ASCII string representing the numerical value. For
example, if the given command is

CONTOUR/Z=`temp[X=180,Y=0,Z=@LOC:15]` salt 

Ferret will evaluate the expression “temp[X=180,Y=0,Z=@LOC:15]” (the depth of the 15-
degree isotherm at the equator/dateline—say, it is 234.5 meters). Ferret will generate and
execute the command

CONTOUR/Z=234.5 salt

Embedded expressions:

• the expression must evaluate to a single number, a scalar, or Ferret will respond that the
command contains an error

• if the result is invalid the numerical string will be “bad” (see BAD= in following section)
• region qualifiers that begin a command containing an embedded expression will be used in

the evaluation of the expression
• if multiple embedded expressions are used in a single command they will be evaluated from

left to right within the command. This means that embedded expressions used to specify
region information (e.g., the above example) may influence the evaluation of other
embedded expressions to the right

• when embedded expressions are used within commands that are arguments of a REPEAT
command their evaluation is deferred until the commands are actually executed. Thus the
embedded expressions are re-evaluated at each loop index of the REPEAT command

• grave accents have a higher priority than any other syntax character. Thus grave accent
expressions will be evaluated even if they are enclosed within quotation marks, parentheses,
square brackets, etc.

• substitutions based on dollar-signs (command script arguments and symbols) will be made
before embedded expressions are evaluated

• a double grave accent will be translated to a single grave accent and not actually evaluated.
Thus double grave accents provide a mechanism to defer evaluation so that grave accent
expressions may be passed to the Unix command line with the SPAWN command or may
be passed as arguments to GO scripts (to be evaluated INSIDE the script.

• the state of mode verify will determine if the evaluation of the embedded expression is
echoed at the command line—similar to REPEAT loops



58    CHAPTER 3

3.1  Special calculations using embedded expressions

By default Ferret formats the results of embedded expressions using 5 significant digits. If the
result of the expression is invalid (e.g., 1/0) the result by default is the string “bad”. Controls
allow you to specify the formatting of embedded expression results in both valid and invalid
cases and to query the size and shape of the result.

The syntax to achieve this control is KEYWORD=VALUE pairs inside the grave accents,
following the expression and set off by commas. The recognized keywords are “BAD=”,
“PRECISION=”, and “RETURN=”. Only the first character of the keyword is significant, so
they may be abbreviated as “B=”, “P=”, and “R=”.

PRECISION=, BAD=, and RETURN= may be specified simultaneously, in any order,
separated by commas. If RETURN= is included, however, the other keywords will be ignored.

PRECISION=#digits

can be used to control the number of significant digits displayed, up to a maximum of 10
(actually at most 7 digits are significant since Ferret calculations are performed in single
precision). Ferret will, however, truncate terminating zeros following the decimal place. Thus

say ̀3/10,PRECISION=7`

will result in

0.3

instead of 0.3000000.

If the value specified for #digits is negative Ferret will interpret this as the desired number of
decimal places rather than the number of significant digits. Thus

say ̀35501/100,P=-2`

will result in

355.01

instead of 355.

In the case of a negative precision value, Ferret will again drop terminating zeros to the right
of the decimal point.



VARIABLES AND EXPRESSIONS    59

BAD=string

can be used to control the text which is produced when the result of the immediate mode
expression is invalid. Thus 

SAY `1/0,BAD=missing`

will result in

missing

or

SAY `1/0,B=-999`

will result in

-999

RETURN=

The keyword RETURN= can reveal the size and shape of the result. RETURN= may take
arguments

• SHAPE
• ISTART, JSTART, KSTART, or LSTART,
• IEND, JEND, KEND, or LEND

RETURN=SHAPE

returns the 4-dimensional shape of the result—i.e., a list of those axes along which the result
comprises more than a single point. For example, a global sea surface temperature field at a 
single point in time:

SAY `SST[T=1-JAN-1983],RETURN=SHAPE`

will result in

XY

See Symbol Substitutions for examples showing the special utility of this feature.



60    CHAPTER 3

RETURN=ISTART  (and similarly JSTART, KSTART, and LSTART)

returns the starting index of the result along the indicated axis: I, J, K, or L. For example, if
CAST is a vertical profile with points every 10 meters of depth starting at 10 meters then
Z=100 is the 10  vertical point, soth

SAY `CAST[Z=100:200],RETURN=KSTART`

will result in

10

RETURN=IEND  (and similarly JEND, KEND, and LEND)

returns the ending index of the result along the indicated axis: I, J, K, or L. In the example
above

SAY `CAST[Z=100:200],RETURN=KEND`

will result in

20

The size and shape information revealed by RESULT= is useful in creating sophisticated
scripts. For example, these lines could be used to verify that the user has passed a 1-dimensional
field as the first argument to a script

LET my_expr = $1
DEFINE SYMBOL SHAPE `my_expr,RESULT=SHAPE`
QUERY/IGNORE ($SHAPE%|X|Y|Z|T|<Expression must be 1-dimensional%) 

4  DEFINING NEW VARIABLES

The ability to define new variables lies at the heart of the computational power that Ferret
provides. Complex analyses in Ferret generally proceed as hierarchies of simple variable
definitions. As a simple example, suppose we wish to calculate the root mean squared value of
variable, V, over 100 time steps. We could achieve this with the simple hierarchy of definitions:

LET v_rms     = v_mean_sq ^ 0.5
LET v_mean_sq = v_squared[L=@AVE]
LET v_squared = v * v
SET VARIABLE/TITLE="RMS V" v_rms

LIST/L=1:100 v_rms

(listed output not  included)



VARIABLES AND EXPRESSIONS    61

As the example shows, the variables can be defined in any order and without knowledge in
advance of the domain over which they will be evaluated. As variable definitions are given to
Ferret with the LET (alias for DEFINE VARIABLE) command the expressions are parsed but
not evaluated. Evaluation occurs only when an actual request for data is made. In the preceding
example this is the point at which the LIST command is given. At that point Ferret uses the
current context (SET REGION and SET DATA_SET) and the command qualifiers (e.g.,
“L=1:100”) to determine the domain for evaluation. Ferret achieves great efficiency by
evaluating only the minimum subset of data required to satisfy the request.

One consequence of this approach is that definintions such as 

LET a = a + 1 ! nonsense

are nonsense within Ferret. The value(s) of variable “a” come into existence only as they are
called for, thus it is nonsense for them to appear simultaneously on the left and right of an equal
sign. 

4.1  Global, local, and default variable definitions

All of the above definitions are examples of “global variable definitions.” A global variable
definition applies to all data sets. In the above example the expression “v_rms[D=dset_1]”
would be based on the values and domain of the variable V from data set dset_1 and
“v_rms[D=dset_2]” would similarly be drawn from data set dset_2. The domain of v_rms, its
size, shape, and resolution, will depend on the particular data set in which it is evaluated. 

Although global variables are simple to use they can lead to ambiguities. Suppose for example,
that data sets dset_1 and dset_2 contain the following variables:

dset_1 dset_2
______ ______
speed  u, v

If we would like to compare speeds from the two data sets we might be tempted to define a new
variable, speed, as

LET speed = (u*u + v*v)^0.5

In doing so, however, we create an ambiguity of interpretation for the expression
“speed[d=dset_1]”.

To avoid this ambiguity we need to create a variable definition, “speed,” that is local to data
set dset_2. The qualifier /D= used as follows

LET/D=dset_2 speed = (u*u + v*v)^0.5 ! in dset_2, only 



62    CHAPTER 3

provides this capability. The use of /D=dset_2 indicates that this new definition of “speed”
applies only to data set dset_2.

A convenient shortcut is often to define a “default variable.” A default variable is defined using
the /D qualifier with no argument 

LET/D speed = (u*u + v*v)^0.5  ! where "speed" doesn't already exist 

As a default variable “speed” is a definition that applies only to data sets that would otherwise
not posses a variable named speed. In this sense it is a fallback default.

5  DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

A complex analysis generally proceeds within Ferret as a complex hierarchy of expressions:
variables defined in terms of other variables defined in terms of other variables, etc., often
containing many levels of transformation. When an error message such as “can only contour
or vector a 2D region” occurs it may appear difficult to locate the reason for this message.

A simple strategy to locate the source of such problems is to use the command STAT which
shows the size and shape of variables and expressions (simply edit the offending command line,
replacing the PLOT, CONTOUR, VECTOR, etc. command with STAT and eliminating
qualifiers if necessary) and use SHOW VARIABLE to see the variable definitions. By
repeatedly using STAT to examine the component variables of definitions one can quickly
locate the source of the problem.



GRIDS AND REGIONS    63

Chapter 4: GRIDS AND REGIONS

1  OVERVIEW

Information describing a region in space/time, a data set, and a grid is collectively referred to
as the “context.” The current context may be examined with the commands SHOW
DATA_SET, SHOW REGION, and SHOW GRID. The context may be set explicitly with the
commands SET DATA_SET, SET REGION, and SET GRID.

The context may be modified for the duration of a single command with qualifiers to the
command name (separated by slashes). The same qualifiers in square brackets may also modify
single variables, changing the context only of that variable:

yes? PLOT/D=levitus_climatology  temp, salt

yes? CONTOUR  rose[D=etopo20]

yes? FILL/Z=0  temp[L=2] - temp[L=1]

2  GRIDS

Every variable has an underlying grid which defines a coordinate space. All grids are in a sense
4 dimensional (X, Y, Z, and T) but axes normal to the data are represented as “normal”  (such
as the Z axis of the surface wind stress).

Grids can be viewed, specified and created using SHOW GRID, SET GRID, DEFINE AXIS,
and DEFINE GRID. These commands are all in the Commands Reference section of this
manual. Data can be regridded by the G= modifier. (See Chapter 4, section “Regridding.”)

2.1  Defining grids

Axes and grids can be explicitly created by DEFINE AXIS and DEFINE GRID. NetCDF and
TMAP-formatted data set variables have all of the necessary grid and axis definitions embedded
in the data set files, but if you are reading data from an ASCII or binary file, you must tell
Ferret about the underlying grid of your data. 

If you are creating abstract expressions entirely from pseudo-variables, you may want to define
a grid in order to define the coordinate space of your calculation. This will also help produce
a nicely labeled plot. (See example in Chapter 3, section “Abstract Variables.”)



64    CHAPTER 4

Example

This example is taken from the demonstration script “file_reading_demo.jnl”. An ASCII file
contains a grid of numbers, 50 rows by 6 columns. Suppose the data are on a 2D grid of 6
longitudes by 50 latitudes (Figure 11).

yes? DEFINE AXIS/X=10E:60E:10/UNIT=DEGREE xlong
yes? DEFINE AXIS/Y=0:49N:1/UNIT=DEGREE ylat
yes? DEFINE GRID/X=xlong/Y=ylat  gsnoopy2d
! By default only 1 column is read, /COLUMNS= specifies 6 columns
yes? FILE/VAR=my_2D_var/COL=6/GRID=gsnoopy2d snoopy.dat
yes? CONTOUR my_2D_var

Figure 11

2.2  Dynamic grids and axes

The commands DEFINE AXIS and DEFINE GRID, described in the preceding section, should
be used when the grid or axis will be referenced more than once and/or shared among several
variables. In many cases it is more convenient to use dynamic (a.k.a. “implicit”) grids and axes.
Two quick examples:

PLOT SIN(X[X=0:3.14:.1])

– dynamically creates an axis from 0 to 3.14 by 0.1 

SHADE SST[X=140E:160W:5, D=coads_climatology]

– dynamically creates a longitude axis extending from 140E to 160W by 5 degrees,
dynamically creates a grid which is like the grid upon which the variable SST is
defined but with the X axis replaced by the new dynamic axis, and automatically
regrids to this new grid.



GRIDS AND REGIONS    65

2.2.1  Dynamic grids

It is often possible to avoid explicitly defining grids. This is useful in two common situations:

• Situation 1

Regridding to specified axes without the need for defining the destination grid.

Syntax: G*=name@transform

where

* – The orientation of the axis to be regridded: “X,” “Y,” “Z,” or “T”
name – The name of an axis or of another variable defined on the desired axis
@transform – The (optional) name of a regridding transform

Example:

sst[GX=x10deg]

Suppose the variable SST is defined on a 2×2 degree grid in latitude/longitude (e.g., SET
DATA coads_climatology). If we wish to regrid to 10-degree spacing in longitude over a
range from 175W to 75W we could use the commands

DEFINE AXIS/X=175w:75w:10/UNITS=degrees x10deg
LET sst10 = sst[GX=x10deg]

Ferret will dynamically create a grid equivalent to new_grid in 

DEFINE GRID/LIKE=sst/X=x10deg new_grid.



66    CHAPTER 4

Figure 12

Figure 12 shows the effects of regridding the 2×2 degree COADS data to a 10-degree
spacing in longitude using (default) linear interpolation.

The command SHOW GRID SST10 will show the dynamically created grid. The names of
dynamic grids and axes will always be displayed in parentheses.

Note that the transformation method to be used for regridding may also be specified, so LET
SST10 = SST[GX=x10deg@ave] would create a 10-degree spaced result in which each grid
point was computed as the weighted sum of the source points that fell within its grid        
box. The default method for regridding is linear interpolation.

• Situation 2

Automatic reconciliation of incompatible grid shapes 

Syntax: G=name@transform

where

name – The name of a grid or of another variable defined on the desired grid
@transform – The (optional) name of a regridding transform 



GRIDS AND REGIONS    67

Example:

VAR1[g=VAR2]

If two variables are defined on grids that are mutually non-conformable because axes exist
in one grid but do not exist (are NORMAL) in another, Ferret will now create a dynamic
grid to resolve the non-conformabilities. This means that an expression of the form
VAR1[G=VAR2] will be meaningful as long as the grid domains overlap.

For example, TEMP[d=levitus_climatology] is defined on an XYZ (time-independent) grid
whereas SST[d=coads_climatology] is defined on an XYT grid. So to evaluate the
expression SST[d=coads_climatology,G=TEMP[d=levitus_climatology]] Ferret will        
create a dynamic intermediate grid equivalent to 

DEFINE GRID/LIKE=sst[D=coads_climatology]/X=temp/Y=temp 

so that regridding occurs on the X and Y axes but the original grid structure is maintained
with respect to depth and time. 

The command SHOW GRID will reveal the resulting dynamically created grid structure.
  

2.2.2  Dynamic axes

The syntax “GX=lo:hi:delta” can be used in square brackets modifying a variable name to
indicate the dynamic creation of an axis with the indicated range and spacing and the immediate
regridding of the variable to a grid containing that axis. For example, SST[GX=175W:75W:10]
will create a dynamic axis of 10-degree regular point spacing, will create a dynamic grid
incorporating this axis (see previous section), and will regrid the variable SST to this grid.

Similarly, by referring to the grid indices rather than their world coordinates, the expression
SST[GI=1:100:5] will create a dynamic axis that subsamples every 5th longitude point from
SST. In this case the points of the resulting axis may be irregularly spaced if the points of    
the original axis were also irregular.

As with the dynamic regridding described above, transformations can be specified to indicate
the regridding technique. Thus SST[GI=1:100:5@AVE] will use averaging instead of the
default linear interpolation to perform the regridding.

As a notational convenience the “G” may be dropped when referring to dynamic axes. Thus
SST[X=175W:75W:10] is equivalent to SST[GX=175W:75W:10] and SST[I=1:100:5@AVE]
is equivalent to SST[GI=1:100:5@AVE]. When using this notational convenience keep in    
mind that a regridding is taking place, so the transformation applied (if any) must be a
regridding transformation (see SHOW TRANSFORMS).



68    CHAPTER 4

Figure 13

The lower plot of Figure 12 illustrates the effect of dynamic axes in the command

SHADE SST[GX=175W:75W:10]

2.2.3  Dynamic pseudo-variables

The same notation used for dynamic axes may also be applied to pseudo-variables providing
a simple means for creating arrays of values. For example, X[GX=0.2:1:0.2] is a vector of 5
points from 0.2 to 1 at a regular spacing of 0.2 units. The vector is oriented in the X direction.

An example of using such a vector is

PLOT SIN(X[GX=0:3.14:.1])

Note that when the lo:high:delta notation is applied to T or L expressed as calendar dates the
units of the delta value will be hours. For example, L[GT=1-jan-1980:1-feb-1980:24] is the
integers 1 to 32 defined on an axis of 32 days, 24 hours apart.

As a notational convenience the “G” may be dropped when referring to dynamic
pseudo-variables. Thus X[X=0.2:1:0.2] is equivalent to X[GX=0.2:1:0.2].

2.3 Regridding

Syntax:
var[G=name]      for (default) linear interpolation to new grid

or
var[G=name@trn]      to regrid all axes using transform “trn” (see below)

or
var[G=name,GX=@TRN,GY=@TRN,...]  to control regridding transformations along

each axis separately



GRIDS AND REGIONS    69

where
var is the name of the variable (e.g., temp, u, tau, ...)
name  is the name of a variable (e.g., temp[G=u]) or the name of a grid (e.g.,

temp[G=gu01])
trn is the name of a special transformation (e.g., @AVE, @ASN, @LIN)

The Ferret distribution provides a demonstration of regridding:

yes? GO regridding_demo

Regridding is essential for algebraic operations that combine variables on incompatible grids.
Ferret provides the commands DEFINE AXIS and DEFINE GRID to assist with the creation
of arbitrary grids. 

Ferret insists on consistent dimensionality during regridding operations. It is not permissible
for a variable that is normal to a given axis to be directly regridded to a grid that has defined
locations along that axis or vice versa.

Again, type “GO regridding_demo” at the Ferret prompt for some graphical examples. 

Examples 

1) Suppose the variables u and temp are on staggered X, Y, and Z axes but share the same T
axis. Then the two variables can be multiplied together on the axes (grid) of the u variable
as follows:

yes? CONTOUR u * temp[G=u]

This will regrid temp onto the u grid by multi-axis linear interpolation before performing the
multiplication.

2) Two variables, v1 and v2, are defined on distinct 4-dimensional grids (X, Y, Z, and T axes).
The T axes of the two grids are identical but  the X, Y, and Z axes all differ between the two
variables. (This is often the case in numerical model outputs.)  

To obtain the variable v1 on its original Z (depth) locations but regridded in the XY plane to
the grid locations of the variable v2, define a new grid (say, named “new_grid”) that has the
X and Y axes of v2 but the Z axis of v1. 

yes? DEFINE GRID/LIKE=v2/Z=v1 new_grid        !define new grid
yes? LIST/X=160E:140W/Y=5S:5N v1[G=new_grid]  !request regridding

3) In this example we look at temperature data from two data sets. levitus_climatology, an
annual climatology, has the variable “temp” on an XYZ grid which is 1×1 degree in XY, and
coads_climatology, a monthly climatology, has the variable “sst” on an XYT grid which is



70    CHAPTER 4

2×2 degrees in XY. Suppose we wish to look at the sea surface temperatures in January at
the higher XY resolution of the Levitus data.

yes? SET DATA levitus_climatology
yes? SET DATA coads_climatology
yes? SET REGION/L=1/Z=0
yes? !get the name of the grid on which temp is defined
yes? SHOW GRID temp[D=levitus_climatology]  ! --> "glevitr1"
yes? DEFINE GRID/X=glevitr1/Y=glevitr1/Z=sst/L=sst glevitus_xy
yes? LIST/X=150E:155E/Y=0:5N sst[G=glevitus_xy]

2.3.1 Regridding transformations

Ferret version 4.4 supports several regridding transformations. Use the SHOW
TRANSFORMATIONS command to obtain a list of the supported  transformations from
Ferret. The choice of regridding transformation determines the computation by which data from
the source grid determine the values on the destination grid.

@LIN—linear interpolation (the default if no transform is specified)
Performs regridding by multi-axis linear interpolation.

@AVE—averaging
Computes the length-weighted average of all points on the source grid that lie partly or
completely within each grid cell of the destination grid.

Note: When @AVE is applied simultaneously to the X and Y axes, where X and Y are
longitude and latitude, respectively, an area-weighted average (weighted by cos(latitude))
is used. The @AVE transformation is unique in this respect. In multiple axis applications
other than X and Y @AVE will be applied sequentially to the axes, computing the “average
of the average.” This may not be the desired weighting scheme in some cases. See @VAR
for an example.

@ASN—(blind) association
Associates by subscript (blindly) the points from the source grid onto destination
coordinates.

@VAR
Computes the variance of the points from the source grid that fall within each destination
grid cell. This is a length-weighted computation like the @AVE transformation.

Note: This transformation is suitable for regridding only in a single axis. When applied
simultaneously to two axes, for example, it will compute the variance of the variance. For
example, V[gx=130E:80W:10@VAR, gy=205:20W:10@VAR] is equivalent to
tmp[X=130E:80W:10@VAR] where tmp=V[y=20S:20N:10@VAR].



GRIDS AND REGIONS    71

@NGD
Compute the number of points from the source grid that fall within each destination grid
cell. Note that the results of this calculation need not be integers—this is a length-weighted
computation like the @AVE transformation. It is common for a grid cell on the source grid
to span the boundary between grid cells on the destination grid, thereby contributing a
fraction of its weight to multiple destination grid cells.

Note: This transformation is suitable only for regridding on a single axis. When applied
simultaneously to two axes, for example, it will compute a constant. See @VAR for an
example.

@SUM
Computes the length-weighted sum of the points from the source grid that fall within each
destination grid cell. This is a length-weighted computation like the @AVE transformation.

@MIN
Finds the minimum value of those points from the source grid that lie within each
destination grid cell. Note that this is NOT a weighted calculation; the destination grid cell
that “owns” a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

@MAX
Finds the minimum value of those points from the source grid that lie within each
destination grid cell. Note that this is NOT a weighted calculation; the destination grid cell
that “owns” a source point is determined entirely from the coordinate location of the source
point, not from the limits of the source grid cell.

Regridding transformations provide a means to perform a given calculation over a limited
span of coordinates and repeat that calculation for a series of contiguous spans. For example,
if we wish to compute the variance of the variable SST over 10-degree longitude range from
180 to 170W we could use the syntax sst[X=180:170w@VAR] . Now, if we wish to perform
the same operation 10 times in 10-degree wide bands from 180 to 80W we could instead use
G=@VAR regridding as in (see Dynamic Grids for an explanation of the “GX=” syntax):

DEFINE AXIS/X=175w:85w:10/UNITS=degrees ×10deg
LET sst10 = sst[GX=x10deg@VAR]

Examples

1) Let variable temp be defined on a grid with points spaced regularly at 1-degree intervals in
both longitude and latitude (X and Y). Let grid “g10” possess points spaced regularly at 10-
degree intervals in both X and Y. 

yes? PLOT temp[G=g10] ! uses linear interpolation (@LIN)



72    CHAPTER 4

Figure 14

yes? PLOT temp[G=g10@AVE] !area-averages 10x10 degrees of source\
points into each destination point.

yes? PLOT temp[G=g10,GX=@AVE] !averages 10 degrees of longitude but\
interpolates (@LIN) in Y.

2) @ASN has the effect of bypassing
Ferret’s protections against
misrepresenting data (Figure 14).

yes? SET DATA levitus_climatology
yes? SET REGION/X=180/Y=0
! true profile
yes? PLOT/Z=0:5000 temp
yes? DEFINE AXIS/DEPTH
      /Z=100:2000:100  zfalse
yes? DEFINE GRID/LIKE=temp
      /Z=zfalse  gfalse
! false profile
yes? PLOT/Z=0:5000/OVER
      temp[G=gfalse@ASN] 

2.4  Modulo regridding

Ferret can create climatologies from time series simply by regridding to a climatological axis
with a modulo regridding transformation. For example, if the axis named month_reg is a 12-
point monthly climatological (modulo) axis then the expression

LET sst_climatology = sst[D=coads,GT=month_reg@MOD] 

is a 12-month climatology computed by averaging the full time domain of the input variable
(576 points for coads) modulo fashion into the 12 points of the climatological axis.

To generate a climatology based on a restricted range of input data simply define an
intermediate variable with the desired points. For  example, a monthly climatological time
series based on data from the 1960s could be computed using

LET sst_1960s = sst[D=coads,T=1-jan-1960:31-dec-1969]
PLOT sst_1960s[GT=month_reg@MOD]

In a similar fashion intermediate variables can be defined that mask out certain input points.

This example shows the entire sequence necessary to generate a plot of climatological SST at
40N, 40W based on the January 1982 to December 1992 Fleet Numerical wind data set. Figure
15 shows the output of these calculations. 



GRIDS AND REGIONS    73

Figure 15

! use the predefined climatological axes
USE climatological_axes
CANC DATA climatological_axes

! use the Fleet Numerical winds
SET DATA monthly_navy_winds

! plot the raw data (top figure)
SET REGION/X=40w/Y=40n
plot uwnd

! plot the 12 month climatology (middle figure)
LET uwnd_clim = uwnd[GT=month_reg@MOD]
PLOT uwnd_clim

! since uwnd_clim is on a climatological axis
! Ferret can also plot it on the calendar axis with the raw data
PLOT/T=16-jan-1982:17-dec-1992 uwnd,uwnd_clim

In many cases the volume of input data needed to perform climatological calculations is very
large. In the example above the command 

CONTOUR/X=0:360/Y=90s:90n sst_climatology[L=1] 



74    CHAPTER 4

Figure 16

to plot January from the climatology would require Nx*Ny*Nt=72*72*576=3 Megawords of
data. Such calculations may be too large to fit into memory. However, if the region is fully
specified (as shown for the X and Y limits in the example) Ferret’s internal memory manager
will break up the calculation as needed to produce the result. (See Memory Use in the Ferret
User’s Guide for further details.)

Unlike other transformations and regridding, modulo regridding is performed as an unweighted
axerage: each non-missing source point contributes 100% of its weight to the destination grid
box within which it falls. If the source and destination axes are not properly aligned this can
lead to apparent shifts in the data. For example, if a monthly time series has data points at the
first of each month and a climatological axis is defined at midmonths, then unweighted modulo
averaging will lead to an apparent 1/2-month shift. To avoid situations of this type simply
regrid to the climatological axis using linear interpolation prior to the modulo regridding.



GRIDS AND REGIONS    75

Here is an example that illustrates the situation and the use of linear interpolation to repair it.
Figure 16 shows the output of these calculations.

! define test_var, an illustrative variable with 1 year periodicity
! Note: test_var points are at the **beginnings** of months
DEFINE AXIS/T=1-jan-1970:1-jan-1974:`365.25/12`/UNITS=days t10years
DEFINE GRID/T=t10years gg
LET test_var = SIN(L[G=gg]*2*3.14/12)

! plot 4 years of the cycle
PLOT test_var

! define climatological axes at the midpoints of months
USE climatological_axes
CANC DATA climatological_axes

! notice that modulo regridding appears to shift the data
! (due to mis-aligned source and destination axes) (top figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var[GT=month_reg@MOD]

! to avoid the shift we can first regrid test_var to mid-month
! points using linear interpolation (the default regridding method)
! notice that the function test_var is largely unchanged by this
LET test_var_centered = test_var[GT=month_reg]
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered 

! finally perform a modulo regridding on well-aligned data
! notice that the shift is gone (bottom figure)
PLOT/OVER/T=1-jan-1970:1-jan-1974 test_var_centered[GT=month_reg] 

2.4.1  Modulo regridding statistics

In addition to the modulo averaging calculation performed by @MOD Ferret provides other
statistics of the regridding. All modulo regridding calculations are unweighted as discussed
under @MOD.

@MODVAR
the variance of source points within each destination grid box (SUM(var-varbar)^2)/(n-1))

@MODSUM
the sum of the source points within each destination grid box

@MODNGD
the number of source points contributing to each destination grid box

@MODMIN
the minimum value of the source points contributing to each destination grid box

@MODMAX



76    CHAPTER 4

the maximum value of the source points contributing to each destination grid box

3  REGIONS

The region in space and time where expressions are evaluated may be specified in 3 different
ways:

1) with the command SET REGION
2) with qualifiers to the command name (slash-delimited)
3) with qualifiers to variable names (in square brackets, comma-delimited)

If SET REGION is used, Ferret remembers the region as the default context for future
commands, whereas a qualifier to a command name specifies the region for that command only,
and a qualifier to a variable name specifies the region for that variable and command only.

Regions may be manipulated using DEFINE REGION, SET REGION, @ notation, and
CANCEL REGION. The Commands Reference section of this manual covers all of these
topics.

Region information is normally specified in the following form:

QUAL=val   or 
QUAL=lo_val:hi_val   or
QUAL=val@transform   (as a variable qualifier only)   or
QUAL=lo_val:hi_val@transform   (as a variable qualifier only)

When the region for an axis is specified as a single value (instead of a range) Ferret, by default,
selects the grid point of the grid box containing this value. The Ferret mode “interpolate” can
control this behavior. See command SET MODE INTERPOLATE in Commands Reference.

Examples:  Regions

Examples of valid region specifications.

1) Fully specify the region in an XY plane with the first vertical (Z) level and time 27739.

yes? SET REGION/X=140E:160W/Y=10S:20N/K=1/T=27739

2) Contour vertical heat advection within whatever region is the current default (previously set
with SET REGION).

yes? CONTOUR qadz

3) Define, modify and set a named region and then modify with delta notation.



GRIDS AND REGIONS    77

yes? DEFINE/REGION/Y=5S:5N YT !define region YT to be 5S:5N
yes? DEFINE REGION/DY=-1:+1 YT !modify region YT to be 6S:6N
yes? SET REGION/@YT !set current region to YT
yes? SET REGION/DY=-1:+1 !modify current region to 7S:7N

 
4) List meridional currents calculated by averaging values between the surface and a depth of

50 m.

yes? LIST v[Z=0:50@AVE]

5) Equivalent to v[Z=10] - v[Z=0:100@AVE] , the anomaly at z=10 between v and the 0  to
100 meter depth average of v.

yes? LIST/Z=10 v - v[Z=0:100@AVE]

3.1 Latitude

Specify latitude or a latitude range with the qualifier Y or J. Specifications using J are integers
between 1 and the number of points on the Y axis. Specifications using Y are in the units of the
Y axis. 

The units may be examined with SHOW GRID/Y. If the Y axis units are degrees of latitude
then the Y positions may be specified as numbers followed by the letters “N” or “S”.

Examples

yes? CONTOUR temp[Y=15S:10N]
yes? LIST/J=50 u

3.2 Longitude

Specify longitude or a longitude range with the qualifier X or I. Specifications using I are
integers between 1 and the number of points on the X axis. Specifications using X are in the
units of the X axis. 

The units may be examined with SHOW GRID/X. If the units are degrees, then X values may
be given as numbers followed by “W” or “E” (e.g., 160E, 110.5W) or as values between 0 and
360 with Greenwich at 0 increasing eastward. Note: If the X axis is “modulo” then it is
sometimes desirable to use X greater than 360.

Examples

yes? CONTOUR  temp[Y=160E:140W]
yes? LIST/I=100  u
yes? SHADE/X=100:460  temp !360 degrees centered at 100W



78    CHAPTER 4

See Chapter 4, section “Modulo Axes,” for help with globe-encircling axes.

3.3 Depth

Specify depth or a depth range with the qualifier Z or K. Specifications using K are integers
between 1 and the number of points on the Z axis. Specifications using Z are in the units of the
Z axis. 

The units may be examined with SHOW GRID/Z.

Examples

yes? CONTOUR temp[Z=0:100]
yes? LIST/K=3 u

3.4 Time

Specify time or a time range with the qualifier T or L. Specifications using L are integers
between 1 and the number of points on the T axis. Specifications using T may refer to calendar
dates or to the time step units in which the time axis of the data set is defined.

Calendar date/time values are entered in the format dd-mmm-yyyy:hh:mm:ss,  for example 14-
FEB-1988:12:30:00. At a minimum the string must contain day, month and year. If the string
contains any colons it must be enclosed in quotation marks to differentiate from colons used
to designate a range. If a time increment is specified with the repeat command given in calendar
format (e.g., REPEAT/T="1-JAN-1982":"15-JAN-1982":6) it is interpreted as hours always.
Calendar dates in the years 0000 and 0001 are regarded as year-independent dates (suitable
for climatological data).

SHOW GRID/T can be used to display time step values. (Units may vary between data sets.)
The commands SET MODE CALENDAR and CANCEL MODE CALENDAR can be used to
view date strings or time steps, respectively.
 
Examples

yes? LIST/T="1-JAN-1982:13:50":"15-FEB-1982"   density
yes? CONTOUR temp[T=27740:30000]
yes? LIST/L=90 u

See Chapter 4, section “Modulo Axes,” for help with climatological axes.

3.5 Delta

The notation q=lo:hi:delta (e.g., Y=20S:20N:5) specifies that the data in the requested range
is regularly subsampled at interval “delta.”



GRIDS AND REGIONS    79

This notation is valid only for the REPEAT, SHOW GRID, and DEFINE AXIS commands, and
the qualifiers /XLIMITS and /YLIMITS used in action commands with graphical output.

3.6  @ notation

Regions may be named and referred to using the syntax “@name”. Some  commonly used
regions are predefined. See commands  SET REGION and DEFINE REGION in the
Commands Reference section for further information.

If a region is specified using a combination of “@” notation and explicit axis limits the explicit
axis limits will be evaluated after the “@” specification, possibly superseding the “@” limits.

Note: It is not advised to use the @notation inside of variable definitions, as redifinitions of the
named region can cause code errors that lead to wrong results.

Using the @ notation only sets/alters the axis limits specified in the named region. For example,
suppose that region “XY” is defined for the X and Y axes, but not for the Z and T axes. Then

yes? SET REGION/@XY

modifies only X and Y limits. BUT, 

yes? SET REGION XY

modifies all axes—X and Y to the limits specified by XY, and Z and T to unspecified (even if
they were previously specified).

Examples 

1) Contour the 25th time step of temperature data at depth 10 within region T, the “Tropical
Pacific.”

yes? CONTOUR/@T/Z=10/L=25 temp

2) Produce a contour plot over region W, the “Whole Pacific Ocean,” in the XY plane (the
variable to be contoured as well as the depth and time will be inferred from the  current
context).

yes? CONTOUR/@W var1

3) Set the default region to “T”, the Tropical Pacific Ocean (latitude 23.5S to 23.5N).

yes? SET REGION/@T

4) Define a region and then supersede with an axis limit specification.



80    CHAPTER 4

yes? DEFINE REGION/X=180:140W/Y=2S:2N/Z=5   BOX1
yes? SET REGION/@BOX1/Z=15 !replace Z 

Pre-defined regions

As a convenience in the analysis of the Tropical Pacific Ocean the following regions are pre-
defined:

Name Region Latitude Longitude
T Tropical Pacific 23.5S:23.5N 130E:70W
N Narrow Pacific 10.0S:10.0N 130E:70W
W Whole  Pacific 30.0S:50.0N 130E:70W

These may be redefined by the user for the duration of a Ferret session or until the definitions
are canceled.

3.7 Modulo axes

Some axes are inherently “modulo,” indicating that the axis wraps around—the first point
immediately following the last.

To determine if an axis is modulo use SHOW AXIS or SHOW GRID. A letter “m” following
the number of points in the axis indicates a modulo axis. The command SHOW GRID qualified
by the appropriate axis limits can be used to examine any part of the axis—including points
beyond the nominal length of the axis. The commands SET AXIS/MODULO and CANCEL
AXIS/MODULO can be used to control this feature on an axis-by-axis basis.

Example

yes? SET DATA coads_climatology
yes? SHOW GRID/I=180:183 sst !range request beyond last point
  GRID COADS1          
  name       axis       # pts     start            end
  COADSX  LONGITUDE     180mr     21E              19E(379)     
  [text omitted]  
        I     X                 BOX_SIZ                         
       180>  19E(379)              2                            
       181>  21E(381)              2                            
       182>  23E(383)              2                            
       183>  25E(385)              2                            
      

The most common uses of modulo axes are:

1) As longitude axes for globe-encircling data sets. This allows any starting and any ending
longitudes to be used, for example, X=140E:140E indicates the entire earth with data
beginning and ending at 140E.



GRIDS AND REGIONS    81

2) As time axes for climatological data. By this device the time axis appears to extend from
0 to infinity and the climatological data can be referred to at any point in time. This
facilitates comparisons with data sets at fixed times.



ANIMATIONS    83

Chapter 5: ANIMATIONS AND GIF IMAGES

1  OVERVIEW

A sequence of Ferret plots can be stored and then animated. Each plot is stored as one frame
in a movie file. Ferret stores movie frames in Hierarchical Data Format (HDF), a format
designed by the National Center for Supercomputing Applications (NCSA). A movie file can
then be displayed as an animated sequence of frames with NCSA’s xds—X Data Slice (not
distributed with Ferret; see Chapter 4, section “Displaying a movie,” for details).

2 CREATING AN HDF MOVIE

Creating a movie requires two steps:

1) designate an output file with SET MOVIE
2) generate a sequence of frames with REPEAT and FRAME

See commands SET MOVIE, CANCEL MOVIE, SHOW MOVIE, FRAME and REPEAT in
the Commands Reference section of this manual.

Example: basic movie

yes? SET DATA coads_climatology !specify data set
yes? SET REGION/@W !specify Pacific Ocean
yes? LET/TITLE="SST Anomaly" SST_ANOM = SST - SST[L=1:12@AVE]
yes? REPEAT/L=1:12 (FILL sst_anom; FRAME/FILE=my_movie.mgm)

!filled contour of sea sur face\
temp anomaly captured and\
written to HDF file

Optionally, “.mgm” will be assigned to the movie file.

REPEAT executes its argument (in the above example, FILL) successively for each timestep
specified. REPEAT can have multiple arguments separated by semi-colons and enclosed in
parentheses.

FRAME is a stand-alone command, but also a qualifier for the graphical output commands
PLOT, CONTOUR, FILL (alias for CONTOUR/FILL), SHADE, VECTOR and WIRE. 

The saved animation frames are exactly the size and shape of the window from which they are
created. Thus a large window results in a larger, slower animation that demands more disk
space and memory to play back. The SET WINDOW/SIZE=  command is generally used to
specify minimally acceptable frame size.



84    CHAPTER 5

See Chapter 4, section “Advanced Moviemaking,” for more examples.

3  DISPLAYING AN HDF MOVIE

Viewing a movie requires software which is not included with the Ferret distribution (although
in some cases we have made the binary available in Ferret’s anonymous ftp area). NCSA’s X
Data Slice reads HDF files and is available via anonymous ftp from NCSA. It requires about
1.7Mb of disk space. NCSA’s ftp server is 

ftp.ncsa.uiuc.edu      login id is “anonymous”, give your e-mail address as the password

Consult the README files you will find there for instructions on obtaining X Data Slice. Other
utilities from NCSA can also be used for animations.

4  ADVANCED MOVIE-MAKING

4.1  REPEAT command

The REPEAT command is quite flexible. It allows you to repeat a sequence of commands, not
just a single command as in the basic example above. You can give the GO command as an
argument to REPEAT. The following examples demonstrate these techniques.

Note: MODE VERIFY must be SET (this is the default state) for loop counting to work.

Example 1

Here we give multiple arguments to REPEAT; note the semi-colon separation and the
parentheses. Note that FRAME, in this example, is used as a stand-alone command.

yes? REPEAT/L=1:12 (FILL SST; GO fland; FRAME/file=my_movie.mgm)

Example 2

In this example we use the REPEAT command to pan and zoom over a sea surface temperature
field.

SET DATA coads_climatology
SET REGION/L=1
SET REGION/X=120E:60W/Y=45S:45N
SHADE sst; GO fland



ANIMATIONS    85

! ZOOM
REPEAT/K=1:5 (SET REGION/DX=+8:-8/DY=+8:-8; SHADE sst; GO fland; FRAME) 

! PAN
REPEAT/K=1:5 (SET REGION/DX=+5; SHADE/LEV=(20,30,.5) sst; FRAME) 

Example 3

In this example the user calls setup_movie.jnl (text included below), title.jnl, which creates a
title frame, then repeats main_movie.jnl (text included below) for each time step desired.
Finally, the user adds a frame of credits at the end of the movie. Each of the scripts would end
with the FRAME command (except setup_movie). Using GO scripts as arguments to REPEAT
allows you to customize the plot with many commands before finally issuing FRAME, as the
text of main_movie.jnl below demonstrates. 

yes? ! make the movie
yes? GO setup_movie
yes? GO title
yes? REPEAT/L=1:12 GO main_movie
yes? GO credits

! setup_movie.jnl
SET WINDOW/SIZE=.45/ASPECT=0.7
SET MOVIE/file=my_movie.mgm
SET DATA coads_climatology
SET REGION/X=130E:75W/Y=8S:8N
SET MODE CALENDAR:months
GO bold
PPL SHAKEY ,,.15,.2
PPL AXLEN 8.8,4.8

 
! main_movie.jnl
FILL/SET_UP/LEVELS=(16,31,1) sst
PPL LABS; PPL TITLE
PPL FILL
LABEL 210,9.5,0,0,.22 @TRCOADS MONTHLY CLIMATOLOGY (1946-1989)
LABEL 210,-12,0,0,.22 @TRSEA SURFACE TEMPERATURE (DEG C)
LABEL 130,11,-1,0,.22 @TR'LAB4'
FRAME

Note: If you use the FILL command, we suggest that you use SHADE while customizing and
fine-tuning your movie, then use FILL for the final run. SHADE is much faster.

4.1.1  Initializing the color table

If you create a movie with a title frame, or a first frame which otherwise uses different colors
than the rest of the movie, you should be aware of an HDF peculiarity: all the colors that you
plan to use in your movie must be in the first frame, or else color behavior will be unpredictable
when you animate.   



86    CHAPTER 5

To “reserve” the colors you need, use overlapping full-window viewports. Make a
representative plot in the title frame, then cover over it with either a black or white rectangle
and finally write the title text. Here is a script which initializes the color table while creating
a title frame.

! define 3 identical full-frame viewports
DEFINE VIEW full1;  DEFINE VIEW full2;  DEFINE VIEW full3

! draw frame one of the movie in full color
SET VIEW full1
SET DATA coads_climatology
SHADE/LEVELS=(16,31,1)/L=1 sst ! dummy frame

! white-out over the picture
SET VIEW full2
GO setup_text
SHADE/PALETTE=white/NOLAB/NOKEY/i=1:2/j=1:2  (i+j)*0

!put on title frame labels (using [0,1] coordinate space)
SET VIEW full3
GO setup_text
PPL PLOT
LABEL .5,.7,0,0,.3 @TRMy Title
PPL ALINE 1,.2,.55,.8,.55
PPL ALINE 1,.2,.53,.8,.53
LABEL .5,.4,0,0,.2 @CRBy me

!capture the title frame and clean up
FRAME
GO cleanup_text

4.1.2  Making movies in batch mode

Ferret, like other Unix applications, can be run in “batch” mode by redirecting standard input
and output. Thus

ferret -unmapped <movie_commands.jnl >&movie.log&

will make a movie running in background mode based on the commands in file
movie_commands.jnl logging standard output and standard error in file movie.log.

Note, however, that when used in this mode to make a movie ferret will still require access to
an X windows display (as in “setenv DISPLAY node:0”). To eliminate this requirement we
recommend the use of the X11R6 “virtual frame buffer” (Xvfb). This application permits the
movie frames to be generated in the absence of any physical display device. Consult your
system manager for the availability of X11R6 for your system.



ANIMATIONS    87

5  CREATING GIF IMAGES

GIF is a highly compressed format suitable for single images. (Ferret will not directly create
GIF89 animations.) The procedure for creating a GIF image is nearly identical to the creation
of a single frame of an HDF file. The modification is generally just to select a file name with
the “.gif” extension; Ferret will automatically sense this as a request to create a GIF-formatted
image file. Alternatively, any file name can be used if the GIF format is specified explicitly
using

FRAME/FORMAT=GIF

If a number of GIF images are created using the same file name Ferret will automatically
rename subsequent versions with a version number. Thus a repeat loop can be used to generate
many GIF images. 

Example:

REPEAT/L=1:12(FILL sst; GO fland; FRAME/file=myimage.gif)

6  CREATING MPEG ANIMATIONS

MPEG animations can be created from the outputs of the FRAME command—either HDF
animation files or a sequence of GIF images. Various public domain utilities are available to
perform the conversion from Ferret’s output formats into MPEG animations. The routine
hdf2mpeg (available in 1995 from ftp.ncsa.uiuc.edu in HDF/contrib/NCSA/HDF2MPEG) can
be used to convert HDF files into MPEG animations; mpeg_encode (available from
mm-ftp.CS.Berkeley.EDU in /pub/multimedia/mpeg/encode) can be used to convert sequences
of GIF files. New and improved routines may have become available since the time of this
writing. See further documentation on this topic in the FAQ file from the Ferret WWW home
page.



88    CHAPTER 5



Note that throughout this discussion a distinction has been made between Ferret commands and1

PPLUS commands. In reality, the user issues Ferret commands only. “PPLUS commands” in this context
refers to PPLUS commands issued via the Ferret command PPL.

CUSTOMIZING PLOTS    89

Figure 17

Chapter 6: CUSTOMIZING PLOTS

1  OVERVIEW

Detailed control is possible over most aspects of Ferret graphical outputs. A custom
modification will require the user to either add a qualifier to a Ferret command  or
communicate directly with the graphical package PPLUS, which is contained inside of Ferret.
The most commonly used PPLUS commands are listed in the following sections of this chapter.
Consult the PLOT PLUS for Ferret manual for complete command lists and the specifics of
command syntax. 

Ferret communicates with PPLUS by sending a sequence of commands to PPLUS  (the
command PPL ECHO ON causes the sequence of commands that Ferret sends to PPLUS to be
logged in the file fort.40.). The user can give further commands to PPLUS directly using the
Ferret command PPL (e.g.,  yes? PPL AXLEN 10,7 ). Some results can be attained in two
ways—with either Ferret or PPLUS commands. However, the interaction of the two is complex
and the inexperienced user may get unexpected results, so when possible, use only Ferret
commands.1

PPLUS uses a deferred mode of output—
various commands are given to PPLUS
which describe the plot state but produce no
immediate output; the entire plot is then
rendered by a single command. Some plot
states (e.g., axis labels) are set by Ferret with
every plotted output; to customize these
states it is necessary to use the/SET_UP
qualifier (which sets up the plot inside of
PPLUS) and then modify the state with
direct PPL commands. Other plot states are
never set by Ferret and, if modified at any
time, remain in their specified state for all
subsequent plots. Still other states are
modified by Ferret only under special
circumstances. Here is a very simple
customization (Figure 17):

yes? PLOT/X=1:100/TITLE="My SIN Plot"/SET_UP sin(x/6)   !use /SET_UP
yes? PPL YLAB "SIN value"
yes? PPL PLOT



90    CHAPTER 6

The examples throughout this chapter show how the /SET_UP qualifier on graphics commands
can be used to delay rendering of a plot while the user modifies plot appearance with PPLUS
commands. 

Below is a list of PPLUS commands which are reset by Ferret:

PPLUS command when reset by Ferret 
XFOR, YFOR reset for every plot
XLAB, YLAB reset for every plot
XAXIS, YAXIS reset for every plot
LABS reset for every plot
ALINE reset for every plot
TAXIS OFF reset for every plot
TITLE reset for every plot
TICS reset for every plot (small tic size, only)
WINDOW ON reset for every plot
PEN 1,n reset for every plot
LIMITS reset for every plot
ORIGIN reset by SET WINDOW/ASPECT and SET VIEWPORT; Y origin

may be shifted to accommodate many line style keys
AXLEN modified by SET WINDOW/ASPECT and SET VIEWPORT
VIEWPORT modified by WIRE/VIEW
LEV modified by CONTOUR and SHADE unless /LEVELS_SAME

given
VECSET modified by VECTOR unless /LENGTH_SAME given
WINDOW modified for “fresh” plots but not for overlay plots

2  GRAPHICAL OUTPUT

2.1  Ferret graphical output controls

 Ferret command Function
CONTOUR produces a contour plot of a single field
FILL alias for CONTOUR/FILL; produces color-filled contour plot
PLOT  produces a line or symbol plot of one or more arrays
SHADE  produces a shaded representation (rectangular cells)
VECTOR produces a vector arrow plot
WIRE produces a 3D wire frame plot
SET WINDOW manipulates graphics windows
SET VIEWPORT places graphics output into a sub-window (pane)



CUSTOMIZING PLOTS    91

2.2  PPLUS graphical output commands

Whenever a plot is customized using /SET_UP to delay display, the plot will ultimately be
rendered using a PPLUS graphical output command (not the Ferret counterpart). A customized
contour or filled-contour plot is rendered with PPL CONTOUR, a wire frame plot with PPL
VIEW and so on.

Command Function
CONTOUR makes a contour plot
PLOT   plots x-y pairs for all lines of data
PLOTUV  makes a stick plot of vector data
SHADE makes a shaded representation 
VIEW    makes a wire frame plot
VECTOR makes a plot of a vector field

The graphical output command PLOTUV can be used to make stick plots easily, as the
following time series example shows.

yes? SET DATA coads; SET REGION/X=180/Y=0/L=400:500
yes? PLOT/SET uwnd, vwnd
yes? PPL PLOTUV

3 AXES

By default, Ferret displays X- and Y-axes with tics and numeric labels at reasonable intervals
and a label for each axis. Time axes are also automatically formatted and used as needed. These
axis features can be modified or suppressed using the following Ferret direct controls and
PPLUS commands.

3.1  Ferret axis controls

The following qualifiers are used with graphical output commands PLOT, VECTOR, SHADE,
and CONTOUR to specify axis limits, tic spacing and possible axis reversal: 

Ferret qualifers
/XLIMITS,  /YLIMITS 

The /XLIMITS and /YLIMITS qualifiers use the syntax /XLIMITS=lo:hi:delta. Tic marks are
placed every “delta” units, starting at “lo” and ending at “hi”. Every other tic mark is labeled.
“delta” may be negative, in which case the axis is reversed.  



92    CHAPTER 7

The following arguments to SET MODE and CANCEL MODE determine axis style (e.g., SET
MODE CALENDAR:days) :

Ferret arguments
CALENDAR
LATIT_LABEL 
LONG_LABEL  

See the Commands Reference section of this manual for more information.

3.2  PPLUS axis commands

Command Function
XAXIS*   controls numeric labeling and tics on the X axis  (redundant with /XLIMITS)
YAXIS*   controls numeric labeling and tics on the Y axis  (redundant with /YLIMITS)
AXATIC  sets number of large tics automatically for X and Y
AXLABP  locates or omits axis labels at top/bottom or left/right of plot
AXLEN**  sets axis lengths
AXLINT sets numeric label interval for axes every nth large tic
AXLSZE sets axis label heights
AXNMTC sets number of small tics between large tics on axes
AXNSIG  sets no. significant digits in numeric axis labels
AXSET   allows omission of plotting of any axis
AXTYPE sets axis type (linear, log, inv. log) for x- and y-axis
TICS   sets axis tic size and placement inside or outside axes
XFOR*   sets format of x-axis numeric labels
YFOR*    sets format of y-axis numeric labels
XLAB*   sets label of x-axis
YLAB*   sets label of y-axis
TXLABP establishes time axis label position (or absence)
TXTYPE* sets the style of the time axis
TXLINT* specifies which time axis tics will be labeled
TXLSZE sets height of time axis labels
TXNMTC sets number of small tics between large tics on time axis
* issued by Ferret with every relevent plot
 ** issued by Ferret upon SET WINDOW/ASPECT or SET VIEWPORT



CUSTOMIZING PLOTS    93

Figure 18

Figure 19

Examples

1) Plot with no axis labels (character or
numeric) and no tics (Figure 18).
(Equivalent to yes? GO box_plot

  PLOT/I=1:10/NOLABEL 1/i )

yes? PLOT/i=1:30/NOLABEL /SET 1/i
yes? PPL AXLABP 0,0
!turn off numeric labels
yes? PPL TICS 0,0,0,0
!suppress small and large tics
yes? PPL PLOT !render plot
yes? PPL TICS .125,.25,.125,.25
!reset tics to default
yes? PPL AXLABP -1,-1
!reset numeric labels

                   
2)  customize x-axis label (Figure 19; XLAB always reset by Ferret)

yes? PLOT/SET/i=1:100 sin(x/6)
yes? PPL XLAB My Custom Axis Label
yes? PPL PLOT

3) specify tic frequency for y axis 

yes? PLOT/i=1:30/YLIM=0:1:.2 1/i

4  LABELS

Ferret, by default, produces labeled axes, a
plot title, documentation about the plot axes
normal to the plot, and a signature (current
date and Ferret version number) when a plot
is rendered. The /NOLABELS qualifier
suppresses the plot title, the documentation
and signature, but not the axis labels of independent axes; PPLUS commands XLAB,YLAB
and AXLABP control axis labels. 

4.1  Listing labels

The PPLUS command PPL LIST LABELS can be used to list the currently defined labels. For
example,

 yes? PPL LIST LABELS



94    CHAPTER 7

 @ACSEA SURFACE TEMPERATURE (Deg C)
 @ASLONGITUDE
 @ASLATITUDE

          XPOS       YPOS     HGT   ROT   UNITS
 LAB 1  8.000E+00  7.200E+00 0.060    0  SYSTEM  @ASFERRET Ver. 4.40 
 LINE PT:    0.000E+00 0.000E+00  NO LINE     CENTER JUSTIFY LABEL 
 LAB 2  8.000E+00  7.100E+00 0.060    0  SYSTEM  @ASNOAA/PMEL TMAP 
 LINE PT:    0.000E+00 0.000E+00  NO LINE     CENTER JUSTIFY LABEL 
 LAB 3  8.000E+00  7.000E+00 0.060    0  SYSTEM  @ASOct 22 1996 09:24 
 LINE PT:    0.000E+00 0.000E+00  NO LINE     CENTER JUSTIFY LABEL 
 LAB 4  0.000E+00  6.600E+00 0.120    0  SYSTEM  @ASTIME : 16-JAN 
 LINE PT:    0.000E+00 0.000E+00  NO LINE     LEFT   JUSTIFY LABEL 
.
.
.

The first three lines of output show the plot title, the X axis label, and the Y axis label. These
labels are controlled by the PPL TITLE, PPL XLAB, and PPL YLAB commands, respectively.
The three characters “@AS” indicate the font of the label—in this case “ASCII Simplex” (see
Chapter 6, Section 6).

Next is a table of “movable labels”—labels that were defined using the PPL LABS command.
Labels are generally simpler to control with the GO unlabel and LABEL commands described
in the following sections, rather than with the PPL LABS command.

Each label is described with two lines. The column headers refer to the first of the two. The
coordinates of each label, (XPOS,YPOS), may be in units of “inches” or may be in the units
of the axes. This is reflected in the UNITS field of the output, which will contain “SYSTEM”
if the coordinates are in inches or “USER” if the coordinates are axis units. (The /NOUSER
qualifier on the PPL LABS command is used to indicate that coordinates are being given in
inches.) Coordinates are calculated relative to the axis origins. The PPL HLABS and PPL
RLABS commands control label height and rotations, respectively. 

The second line of the label description contains information about an optional line on the plot
which can be used to point to the label (refer to the PPLUS command LLABS or see section
4.7, “Positioning labels using the mouse pointer”). At the end of this line is the text of the
movable label. 

4.2  Adding labels

The Ferret command LABEL adds a label to a plot and takes the following arguments:

yes? LABEL xpos,ypos,center,angle,size text



CUSTOMIZING PLOTS    95

where xpos and ypos are in user (axis) units, size is in inches, angle is in degrees (0 at 3
o’clock) and center is -1, 0, or +1 for left, center, or right justification. The label position will
adjust itself automatically when the plot aspect ratio or the viewport is changed.

If you prefer to locate labels using inches rather than using data units issue the command
 

yes? LABEL/NOUSER xpos,ypos,...

Note, however, that the layout of a plot in inches—lengths of axes, label positions, etc.—shifts
with changes in window aspect ratio (SET WINDOW/ASPECT) and with the use of viewports.
Labels specified using LABEL/NOUSER will need to be adjusted if the aspect ratio or viewport
is changed.   

Notes: 

1) If you use the command PPL LABS instead of LABEL, be aware that when defining a new
movable label, all lower-numbered labels must already be defined.

  
2) The Ferret command LABEL is an alias for PPL %LABEL. PPLUS does NOT consider a

label created with LABEL a movable label. Consequently, no label number is assigned and
the label cannot be manipulated as a movable label. 

3) %LABEL is an unusual command in that the label appears on the plot immediately after  the
command is given, rather than being deferred. This has ramifications for the user who has
multiple plot windows open and is in MODE METAFILE, since a metafile is not closed
until a new plot is begun. If the user produces a plot in window B, and then returns to a
previous window A and adds a label with LABEL, that label will appear on the screen
correctly, but will be in the metafile corresponding to window B.

Example

yes? PLOT/I=1:100  sin(i/6)
yes? LABEL 50, 1.2, 0, 0, .2  @P2MY SIN PLOT

4.3  Removing movable labels

Removing a movable label is a two step process: identifying the label number and then deleting
the label. PPLUS internally refers to all movable labels with label reference numbers. The
PPLUS command LIST LABELS will list the PPLUS labels and the text strings they contain.
Then the user can use “GO unlabel n”, where n is the reference number, to delete a label. 

Example

In this example we plot the same figure in two viewports, one plot with the default “signature,”
and one plot with the signature removed (Figure 20).



96    CHAPTER 7

Figure 20

!upper viewport has a "signature"
yes? PPL BOX on
yes? SET VIEW upper
yes? PLOT/I=1:100 sin(i/6)

!in the lower viewport
!the signature has been removed
yes? SET VIEW lower
yes? GO unlabel 1
yes? GO unlabel 2
yes? GO unlabel 3
yes? PPL PLOT
yes? CANCEL VIEWPORT

4.4  Axis labels and title

Special commands and special logic govern
the labels of axes and titles. Use the PLOT+
commands XLAB, YLAB, and TITLE in
conjunction with the Ferret plotting qualifier
/SET_UP to modify the labeling choices that
Ferret makes.

For two-dimensional plots (CONTOUR, FILL) Ferret will label the plot axes with the titles and
units from the appropriate axes of the grid. The command SHOW GRID can be used to see the
labels that will be used. The title will be the title of the variable (see SHOW VARIABLE and
SHOW DATA/VARIABLE) modified by the units and comments about transformations in
parentheses.

For one-dimensional plots (PLOT) other than PLOT/VS the independent axis will be labeled
using the title and units from the appropriate axis of the grid. The dependent axis will be
labeled with the units of the variable being plotted. The title will be labeled as for two-
dimensional plots.

For output of the PLOT/VS command the axes will be labeled with the titles of the variables
(see SHOW VARIABLE and SHOW DATA/VARIABLE) each modified by its units and
comments about transformations in parentheses. 

4.5  Ferret label controls

In addition to LABEL (discussed above),  Ferret controls include the /NOLABELS qualifier,
which suppresses default plot title, documentation and signature, and /TITLE qualifier to
graphical output commands PLOT, SHADE, CONTOUR, VECTOR, and WIRE:



CUSTOMIZING PLOTS    97

Ferret qualifiers  
/NOLABELS
/TITLE=

and arguments to SET MODE and CANCEL MODE:

Ferret arguments
ASCII_FONT
CALENDAR
LATIT_LABEL
LONG_LABEL 

4.6  PPLUS label commands

Ferret stores the text strings of the following labels in PPLUS symbols. The symbol names are:

symbol name label
LABTIT title label
LABX X axis label
LABY Y axis label
LABn nth movable label

As stated above, PPLUS commands regarding movable labels are largely superceded by the
Ferret command LABEL and “GO unlabel n”.
 

Command Function
LIST LABELS shows the currently defined labels
LABS* makes, removes or alters a movable label
HLABS sets height of each movable label
RLABS sets angle for each movable label
LABSET sets character heights for labels 
LLABS sets start position for and draws a line to a movable label
TITLE* sets and clears main plot label 
XLAB* sets label of X axis
YLAB* sets label of Y axis

* issued by Ferret with every relevent plot

Example

This example customizes a plot using PPLUS label controls.

yes? PLOT/Z=20/I=1:100/SET_UP   z * sin(i/6)
yes? PPL LABS 4,48,0,0 @p2'lab4'
yes? PPL HLABS 4,.25
yes? PPL LABS/NOUSER 5,0,6.3,-1  *** Magnified SIN function ***
yes? PPL LABSET ,,,.35



98    CHAPTER 7

yes? PPL PLOT

4.7  Positioning labels using the mouse pointer

Often it is awkward precisely to position plot labels. Using the mouse pointer can simplify this.
Simply enter a movable label using the PPL LABS command but omitting the coordinates and
justification parameters. Then redraw the plot using PPL CONTOUR, PPL SHADE, PPL FILL,
or PPL PLOT.  PPLUS will provide a menu (located in the plot window) with which to specify
the justification. Select the desired justification, left, right, or centered, and click on the desired
position of the label.

To see the precise numerical coordinates of the label issue the PPL ECHO ON command prior
to the PPLUS command which redraws the plot. The coordinates you have chosen will appear
as a comment line which begins with “C LABS” in the echo file, fort.41. (Easily viewed with
yes? spawn tail -1 fort.41.)

4.8  Labeling details with arrows and text

Using the technique described in section 4.7 it is also simple to create a label with a line or
arrow indicating a detail of a plot. Follow the procedure outlined above but select “Line” or
“Fancy line” (arrow) from the menu that appears in the plot window. Then click on the detail
which is to be labeled. The menu will appear again—this time select the justification and click
on the label position.

To see the precise numerical coordinates of the arrow and label use the PPL ECHO ON
command prior to the PPLUS command which redraws the plot. The endpoint coordinates of
the arrow will appear as a comment line which begins with “C LLABS” in the echo file,
fort.41. The coordinates of the label will appear as a comment line which begins with “C
LABS”. (Easily viewed with “spawn tail -2 fort.41”.) 

5 COLOR

Ferret and PPLUS use colors stored by index. Storage indices 0 and 1 are used as window
background and foreground colors. Indices 1–6 are reserved for lines. As the user makes
SHADE and FILL requests, each color is assigned to the next available storage index beginning
at 7, and that assignment is automatically “protected” when viewports or color overlays are
added.  

If your SHADE and FILL commands request more colors than there are storage indices (256),
you will be informed with an error message and the color behavior may become unpredictable.
For example, if you have multiple viewports defined within a window you may run out of color
storage indices. If you are using the same color palette(s) in each viewport, you can free up
indices by canceling the color protections with PPL SHASET RESET. See the examples later



In the following discussion, “line color/thickness” is used as equivalent to “line style” for the sake of2

simplicity. However, if you are using a black and white printer, then the metafile translator will substitute a dash
pattern for each line color.  See Plotplus Plus: Enhancements to Plotplus to see monochrome line styles. 

CUSTOMIZING PLOTS    99

in this section for details on removing color protection. Currently, there is no way to ask
PPLUS how many colors it is using in a plot. 

The following discussion is divided into a treatment of text and line colors, and a discussion of
shade and fill color.

5.1 Text and line colors2

Line and text colors are regulated by use of storage indices 1–6, each index associated with a
default color. It is possible to change the six available line colors with the PPLUS
enhancements command COLOR. (See Plotplus Plus: Enhancements to Plotplus.)  When you
create a plot with multiple data lines, Ferret automatically draws each line in a different color.
By default, axes, labels, and the first data line are all drawn in the same color. You can modify
this behavior with the following Ferret and PPLUS commands. 

5.1.1  Ferret color controls for lines

Plotted line colors can be set using 

yes? PLOT/LINE=n
yes? VECTOR/PEN=n
yes? CONTOUR/PEN=n

where “n” is an integer between 1 and 18. Type “GO line_samples” in Ferret to see the default
line style possibilities using a combination of /LINE= and /SYMBOL=. See command
PLOT/LINE in the Commands Reference for more information. 

5.1.2  PPLUS text and line color commands

The PPLUS command PEN assigns a color and thickness index to a specified pen. The
command takes the form:

yes? PPL PEN pen_#, color_thickness

where pen_# is the PPLUS pen number and color_thickness is a color and thickness index.
PPLUS uses different pens for different tasks. By default, color_thickness index 1 is assigned
to pen 0. The following chart may be helpful.



100    CHAPTER 7

pen number default color_thickness index drawing task
     0 1 (black or white) axes and labels
     1 1 (black or white) first data line

      2 2 (red) second data line
     3 3 (green) third data line

       4 4 (blue) fourth data line
     5 5 (cyan) fifth data line
     6 6 (magenta) sixth data line          

Note: Whether you plot several data lines simultaneously, or use the /OVERLAY qualifier on
your Ferret commands, the color/thickness result will be the same. But the Ferret/PPLUS
interaction is different. When Ferret plots multiple data lines simultaneously, PPLUS
automatically cycles through pen numbers 1–6. However, if you are using /OVERLAY for
additional data lines, Ferret controls the color_thickness assigned to pen 1 and PPLUS draws
each overlay line with pen 1. 

Pen numbers range from 0 to 6, and color_thickness indices range from 0 to 18. The values 1
to 18 follow the formula:

color_thickness = 6 * (thickness - 1) + color   

where thickness ranges from 1 to 3 and color from 1 to 6. Type “GO line_thickness” in Ferret
to see actual colors and thicknesses.

The special color_thickness index 0 refers to the background color, which produces “invisible”
lines that can be used as “white-out” for special purposes.
   
The following PPLUS commands use the color_thickness index.

Command Function
@Cnnn  uses color_thickness index “nnn” when embedded in a label
PEN    sets color_thickness index for each data line (see chart above)
LEV    sets color_thickness index for contour plot lines

 Examples

1) Ferret’s default behavior—these two plots will look identical

yes? PLOT/i=1:10  1/i, 1/(i+3), 1/i + 1/(10-i) !3 curves with 3 pens
yes? PLOT/i=1:10 1/i !first curve with pen 1
yes? PLOT/OVER/i=1:10 1/(i+3) !overlay with pen 1 (next index)
yes? PLOT/OVER/i=1:10 1/i+1/(10-i) !overlay with pen 1 (next index) 

2) select different colors for pens 0 and 1

yes? PLOT/i=1:10/SET 1/i



CUSTOMIZING PLOTS    101

yes? PPL PEN 1 4 !assign color_thickness 4 to pen 1 (plot curve)
yes? PPL PEN 0 3 !assign color_thickness 3 to pen 0 (axes & labels)
yes? PPL PLOT !render the plot
yes? PPL PEN 0 1 !reset pen 0 to default color_thickness (not\

reset by Ferret as is pen 1)

 
3) better way to do above plot:

yes? PLOT/i=1:10/LINE=4/SET 1/i  !include line style with qualifer /LINE
yes? PPL PEN 0 3 ; PPL PLOT
yes? PPL PEN 0 1

5.2  Shade and fill colors

Colors specified with the PPLUS SHASET command or in spectrum files (also called palette
files) containing pre-defined color palettes define points along an abstract path in RGB color
space that runs from 0 to 100 percent. The spectrum file bluescale.spk, for example, contains
these lines: 

   0  0  0  95
100 95 95 95

The first number is the percentage distance along the path in color space, and the following
numbers are the percents of red, green, and blue, respectively. The actual colors used by
SHADE or FILL are determined by dividing this abstract color scale into n equal increments,
where n is the number of colors, and linearly interpolating between the red, green, and blue
values from the neighboring SHASET percentage points. 

5.2.1  Ferret shade and fill color controls

By default, Ferret will use the PPLUS spectrum file default.spk for shades and fills (normally
default.spk is a Unix soft link to rnb.spk). Ferret comes with many color palettes. The UNIX
command “Fenv” lists the environment variable $FER_PALETTE which is a list of paths to
be searched for palette files (the palette file names all end in .spk). The UNIX command
“Fpalette” allows you to find and examine these files (type “Fpalette -help” at the Unix
prompt). You can easily create your own palette files with a text editor.

Use the Ferret qualifier /PALETTE=  with Ferret graphical output commands
CONTOUR/FILL and SHADE to specify a color palette.  See Chapter 6 section “Custom
Contouring” for details on the CONTOUR qualifier /LEV, which controls colors and dash
patterns, as well as sets contour levels.



102    CHAPTER 7

Ferret qualifiers
/PALETTE=    (alias for PPL SHASET SPECTRUM=)
/LEV=

PALETTE is also a stand-alone command alias; it sets a new default color palette. 

Be aware that when you use /PALETTE= in conjunction with /SET_UP, the color spectrum
you specify becomes the new default palette; to restore the default palette use command
PALETTE with no argument. 

5.2.2  PPLUS shade color commands

Command Function
SHASET sets colors used by SHADE

SHASET is an enhancement of PPLUS designed for Ferret. You can specify a color spectrum,
save a spectrum, change an individual color in the spectrum, or remove the protection (PPL
SHASET RESET) for colors already on the screen. See Plotplus Plus: Enhancements to
Plotplus for more information.

If you need precise control over each individual RGB color on your plot, run “GO
exact_colors”, which contains instructions on modifying individual colors in a palette using
SHASET. 

Examples

1) look at the relief of the earth’s surface

yes? SET DATA etopo120
yes? SHADE rose !Ferret's default behavior
yes? SHADE/PAL=land_sea rose !emphasize land and sea with palette

2) Perhaps you would like to compare two topography resolutions. To illustrate what happens
when you use more colors than are available, request an excessively large number of levels:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER !upper half
yes? SHADE/LEV=(-8000,8000,100) rose !160 colors, default palette
yes? SET VIEWPORT LOWER !lower half
yes? SET DATA etopo20 !high resolution
yes? SHADE/LEV rose[d=etopo20] !another 160 colors (320 > 256!)
yes? CANCEL VIEWPORT

PPL+ error: You're attempting to use more colors than are available.
             Using SHASET RESET to re-use protected colors may help.



CUSTOMIZING PLOTS    103

If you reuse the same palette, as in this example, you can issue PPL SHASET RESET after the
first plot and plot the second picture without error:

yes? SET DATA etopo120
yes? SET REGION/Y=-20:20
yes? SET VIEWPORT UPPER
yes? SHADE/LEV=(-8000,8000,100) rose
yes? SET VIEWPORT LOWER
yes? PPL SHASET RESET !reuse color storage indices
yes? SET DATA etopo20
yes? SHADE/LEV rose[d=etopo20]
yes? CANCEL VIEWPORT

6  FONTS

6.1 Ferret font controls

By default, Ferret produces all plot labels using the fonts ASCII Simplex (code AS) and ASCII
Complex (code AC). For upper and lower case letters these fonts are identical to the fonts
Simplex Roman (SR) and Complex Roman (CR), respectively. In addition, however, fonts AS
and AC include the complete set of ASCII punctuation characters and ignore the special PPLUS
interpretations of the characters “^” (superscript), “_” (subscript), and “@” (change font or
pen). Using a text editor, the ESCAPE character (decimal 27) may be inserted before the
special characters to restore their special interpretation.

The Ferret command CANCEL MODE ASCII causes Ferret to generate PPLUS labels which
have the font unspecified. When the font is unspecified the PPLUS command DFLTFNT
determines the default font and PPLUS  responds to the special characters “^”, “_”, and “@”.
SET MODE ASCII restores normal font behavior. 



104    CHAPTER 7

Figure 21

6.2  PPLUS font commands

Command Function
DFLTFNT Sets default character font for all labeling.
@AB In a label string, selects the font for which AB is a two-letter

abbreviation (i.e., @CI for complex italic—see PPLUS manual for
fonts).

Note that many ASCII punctuation
characters are printable only in ASCII
simplex and complex fonts. In all other fonts
these characters “@”, “^”, and “_” have
special meanings: @ = font change; ^ =
superscript; _ = subscript.

Examples

1) axis labels in custom fonts  (Figure 21)

yes? PLOT/SET/i=1:10/NOLAB 1/i
yes? PPL XLAB @CImy x-axis label
yes? PPL YLAB @GEmy y-axis label
yes? PPL PLOT

2) set default font for all labeling (Figure 22)  

yes? CANCEL MODE ASCII
yes? PPL DFLTFNT CS !complex script
yes? PLOT/I=1:100/TITLE="sin curve"  sin(i/6)
yes? SET MODE ASCII
yes? PPL DFLTFNT SR ! numeric axis labels unaff ected by SET MODE ASCII



CUSTOMIZING PLOTS    105

Figure 22

7  PLOT LAYOUT

7.1  Ferret layout controls

Layout of plots can be controlled with commands which modify window size and aspect ratio,
and viewports.

Ferret command
SET WINDOW/SIZE=/NEW/ASPECT=
DEFINE VIEWPORT/XLIMITS=/YLIMITS=/TEXT=    view_name
SET VIEWPORT   view_name
CANCEL VIEWPORT

7.1.1 Viewports

A viewport is a sub-rectangle of a full window. Viewports can be used to put multiple plots
onto a single window. Issuing the command SET VIEWPORT is best thought of as entering
“viewport mode.”  While in viewport mode all previously drawn viewports remain on the
screen until explicitly cleared with either SET WINDOW/CLEAR or CANCEL VIEWPORT.
If multiple plots are drawn in a single viewport without the use of /OVERLAY the current plot
will erase and replace the previous one; the graphics in other viewports will be affected only
if the viewports overlap. If viewports overlap the most recently drawn graphics will always lie
on top, possibly obscuring what is underneath. By default, the state of “viewport mode” is
canceled. A number of the most commonly desired viewports are pre-defined.



106    CHAPTER 7

7.1.2  Pre-defined viewports

Name Description
FULL full window
LL lower left quadrant of window
LR lower right quadrant of window
UR upper right quadrant of window
UL upper left  quadrant of window
RIGHT right half of window
LEFT left half of window
UPPER upper half of window
LOWER lower half of window

Example:  Graphics Viewports

Plot four variables from coads_climatology into the four quadrants of a single window (Figure
23).

yes? SET DATA coads_climatology
yes? SET REGION/@W/L=8
yes? SET VIEWPORT LL
yes? CONTOUR sst !sea surface temperature
yes? SET VIEWPORT LR
yes? CONTOUR airt !air temperature
yes? SET VIEWPORT UL
yes? CONTOUR slp !sea level pressure
yes? SET VIEWPORT UR
yes? VECTOR/XSKIP=4/YSKIP=4 uwnd,vwnd !zonal wind, meridional wind
yes? CANCEL VIEWPORT 

Figure 23



CUSTOMIZING PLOTS    107

7.1.3  Advanced usage of viewports

For the purposes of defining viewports, a graphics window is considered to have length 1 and
height 1. All viewport commands refer to positions relative to the current aspect ratio of the
window. Thus,

yes? DEFINE VIEWPORT/XLIM=.5,1/YLIM=.5,1  V5

will locate the origin of viewport V5 at the middle of the output window regardless of the shape
of the window.

The qualifiers /XLIMITS=x1,x2 and /YLIMITS=y1,y2 allow the user to specify a portion of
the graphics window to be the defined viewport.  The arguments must be values between [0,1]
(NOT world coordinates). x1 and x2 indicate the portion of the entire length of the window to
be defined as the viewport; y1 and y2 serve an analogous purpose for height. 

The /TEXT=n qualfier allows the user control over the shrinkage or enlargement of text on the
plot. A value of /TEXT=1 indicates that the text size should be the same as it is on the full
screen output. If a value less than 1 is specified the text will shrink. If a value is not specified
Ferret chooses a value appropriate to the viewport size. Acceptable values are 0 < n < inf. but
only values up to about 2 yield useful results.

7.2  PPLUS layout commands

Command Function  
ORIGIN sets distance of plot origin from lower left corner
BOX     controls drawing of a box around the plotting area
CROSS   controls drawing of lines through (0, 0) on graph
ROTATE  rotates plot by 90 degrees on screen and plotter
AXLEN sets axis lengths
SHAKEY locates the color key
VECKEY locates the vector key
AXSET includes/excludes particular axes
SIZE sets the overall size of the graphics window

7.3  Controlling the white space around plots

The location and size of the axis rectangle within the viewport or window determines the
amount of white space surrounding a plot. Complete control over this is possible using low
level controls, DEFINE VIEWPORT/TEXT_PROMINENCE, PPL ORIGIN, and PPL
AXLEN, but these commands are sometimes awkward to work with. A simpler strategy is to
use the GO tool

yes? GO margins



108    CHAPTER 7

When given without arguments this command will report the amount of white space
surrounding a plot. With arguments it will adjust the axis origins and lengths according to the
requested margins. Try the Unix command 

> Fgo -more margins

for further documentation.

8  CONTOURING

8.1  Ferret contour controls

The following qualifiers to the Ferret command CONTOUR allow customization of a contour
plot.

Qualfier Function
/FILL produces a color-filled contour plot (command FILL is an alias for

CONTOUR/FILL)
/LEVELS specifies contour levels, dash patterns, line thickness and color 
/KEY turns on display of color key for color-filled contour plots (default)
/NOKEY turns off display of color key for color-filled plots
/LINE adds contour lines to a color-filled plot (lines replace key)
/PALETTE= specifies a color palette for color-filled contour plot
/PEN= sets line style for contour lines (same arguments as PLOT/LINE=. See

Chapter 6 section “Text and Line Colors”.)
 

8.1.1  /LEVELS qualifier

The /LEVELS qualifier is a powerful and multi-functional tool.

The /LEVELS= qualifer takes the form /LEVELS=levels_descriptor

/LEVELS
without an argument /LEVELS instructs Ferret to reuse CONTOUR or SHADE levels from
the last CONTOUR or SHADE plot

/LEVELS=n
specifying a simple numerical argument such as /LEVELS=25 instructs Ferret to select
approximately 25 levels automatically, based upon the limits of the data to be plotted

/LEVELS=nC  (centered levels)
appending a “C” to the suggested number of levels instructs Ferret to select levels which are
centered about the zero level. Such levels are suitable for zero-symmetric quantities such as
anomalies and velocity components.



CUSTOMIZING PLOTS    109

/LEVELS=x.xD (delta levels)
Use of “D” as a suffix instructs Ferret to use the preceding value as the delta value between
contour levels. Thus /LEVELS=0.25D will cause Ferret to select contour levels that span the
range of the data to be contoured with a delta value of 0.25 between contour levels. The “D”
and “C” notations can be combined. For example, /LEVELS=0.25DC instructs Ferret to
create zero-centered levels with a delta of 0.25 spanning the range of the data.

/LEVELS=(lo, hi, delta)
or

/LEVELS=(lo, hi, delta, ndigits)
or

/LEVELS=(value)
where ndigits is the number of decimal places to use on contour levels as

-1   for integer format
or

-3   to omit numerical labels

Examples

/LEVELS=(10,50,5)
/LEVELS=(-20,20,2)
/LEVELS=(33.5,35.0,.025,3)
/LEVELS=(5)

Refinements to the basic levels may be applied using the syntaxes below. If blanks are included,
surround the entire levels descriptor in double quotation marks.

1) To request additional levels, simply append additional (lo, hi, delta) and/or (value)
specifiers.

Example: /LEVELS="(-100,100,10) (100,1000,100) (2000)"

2) To remove selected levels, append the specifier DEL(lo, hi, delta) or DEL(value).

Example: /LEVELS="(-100,100,10) DEL(10)"

3) To specify the line type as dark (heavy line), append DARK(lo, hi, delta) or DARK(value).
Similar syntax can be applied to LINE (solid, thin) or DASH.

Example: /LEVELS="(-100,100,10) DARK(100) DARK(-100)"

4) To specify the color_thickness index of contour lines (see Chapter 6 section “Color” for a
discussion of color_thickness indices), append PEN(lo, hi, delta, index).

Example: /LEVELS="(-100,100,10) PEN(-100,-10,10,2) PEN(10,100,10,4)"



110    CHAPTER 7

8.2  PPLUS contour commands

Command Function
CONPRE sets prefix for contour labels (usually a font, e.g., “@TR”)
CONPST sets suffix for contour labels (usually units, e.g., “cm”)
CONSET controls various aspects of contour labels and curves (see below)

CONSET is a modified version of the PPLUS command. Two new parameters have been
added—“spline_tension” and “draftsman”. “spline_tension” controls a spline fitting routine for
contour lines, and is primarily used in conjunction with the narc parameter. The new parameter
“draftsman” enables the user to specify horizontally oriented contour labels (draftsman style)
or the default, labels oriented along contour lines. Arguments for CONSET are as follows:

CONSET hgt,nsig,narc,dashln,spacln,cay,nrng,dslab,s pline_tension,draftsman

hgt = height of contour labels.  default=.08 inches
nsig = no. of significant digits in contour labels.   default=2
narc = number of line segments to use to connect contour points.   default=1
dashln = dash length of dashes mode.   default=.04 inches
spacln = space length of dashes mode.   default=.04 inches
cay  This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret

User’s Guide and also in the discussion of objective analysis under command USER in the
Commands Reference section of this manual.

nrng   This argument has no effect on gridded data. It is documented in PLOT PLUS for Ferret
User’s Guide and also (as parameter “rng”) in the discussion of objective analysis under
command USER in the Commands Reference section of this manual.

dslab= nominal distance between labels on a contour line. default=5.0 inches.
spline_tension = a real value that affects the fit of the contour line. default=0. This parameter

is only applied if narc is greater than 1. Otherwise, straight lines are drawn between data
points and no interpolated points are contoured. This value indicates the curviness desired.
    abs(spline_tension) is nearly zero (e.g.,  .01). The resulting curve is approximately a

cubic spline. 
   abs(spline_tension) is large (e.g., 10.). The resulting curve is nearly a polygonal line. 
   spline_tension = 0. The resulting curve is a cubic spline (the default algorithm in ppl). 

A typical value for spline_tension is 1, and the typical useful range of values is .01 to 10. 
draftsman = a real value that controls the label format. default = 0.

0. = original label style—labels oriented along contour arcs 
> 0. = draftsman label style—labels oriented horizontally on the page
< 0. = reserved for future use 

Examples

Run the demonstration on custom contouring for many examples of label styles, contour line
styles (color, thickness dash pattern), and contour intervals— yes? GO custom_contour  



CUSTOMIZING PLOTS    111

1) Color-filled contour plot of sea surface temperature

yes? SET DATA coads_climatology
yes? SET REGION/@t/l=6 !specify tropical Pacific, month 6
yes? SET VIEWPORT upper
yes? FILL sst !filled contour plot
yes? SET VIEWPORT lower
yes? FILL/LINE sst !make the plot with contour lines

2) Let’s improve on the earlier example (5.2.2) of shaded bathymetry with blue palette

yes? SET DATA ETOPO60
yes? LET/TITLE="Surface relief x1000 (meters)" r1000 rose/1000
yes? FILL/PAL=ocean_blue/LINE/LEV=(-8,-1,1,-3)LINE( -8,-1,1,-3)/PEN=4 r1000

Here is a breakdown of the final command line:

FILL color-filled contour plot (alias for CONTOUR/FILL)
PAL specifies color palette for fill colors
LINE specifies that contour lines be overlaid on the filled plot (in lieu of a key)
LEV first arg specifies contour levels without numerical labels, next requests solid lines

(dashed lines are the default for negative contour values)
PEN assigns line style 4 (blue) to contour lines



112    CHAPTER 7



HANDLING STRING DATA : “SYMBOLS ”     113

Chapter 7: HANDLING STRING DATA: “SYMBOLS”

Ferret offers a variety of tools for manipulating strings through the use of “symbols” (variables
defined to be strings). The following are the relevant commands:

DEFINE SYMBOL
usage:

DEFINE SYMBOL symbol_name = string
SHOW SYMBOL

usage:
SHOW SYMBOL/ALL
SHOW SYMBOL symbol_name
SHOW SYMBOL partial_name

CANCEL SYMBOL
usage:

CANCEL SYMBOL/ALL
CANCEL SYMBOL symbol_name

Legal symbol names must begin with a letter and contain only letters, digits, underscores, and
dollar signs.

To invoke symbol substitution—the replacement of the symbol name with its (text)
value—within a Ferret command include the name of the symbol preceded by a dollar sign in
parentheses.

For example,

yes? DEFINE SYMBOL hi = hello everyone
yes? MESSAGE ($hi)              ! issues "hello everyone" msg 

It is also possible to nest symbol definitions, as the following commands illustrate:

yes? DEFINE SYMBOL label_2 = My test label
yes? DEFINE SYMBOL number = 2
yes? SAY ($label_($number))

My test label

1  AUTOMATICALLY GENERATED SYMBOLS

A number of useful symbols are automatically defined whenever Ferret sets up a plot.
Following any plotting command issue the command SHOW SYMBOLS/ALL to see a list.
Consult the PLOT PLUS for Ferret Users Guide (section “General Global Symbols”) for
detailed  descriptions of the plot symbols. For example, if we wish to place a label “hello” at
the upper right corner of a plot we might do the following



114    CHAPTER 7

yes? PLOT/I=1:100 SIN(I/6)
yes? LABEL/NOUSER ($ppl$xlen) ($ppl$ylen) 1 0 .2 hello 

This labeling procedure would work regardless of the aspect ratio of  the plot. Use the
command SHOW SYMBOL/ALL to see the symbols (and see “General Global Symbols” in
the PLOT+ Users Guide).

2  USE WITH EMBEDDED EXPRESSIONS

When used together with Ferret embedded expressions symbols can be used to perform
arithmetic on the plot geometry. For example, this command will locate the plot title in bold
at the center of a plot regardless of the aspect ratio:

yes? LABEL/NOUSER `($ppl$xlen)/2` `($ppl$ylen)/2` 0 0 .2 @AC($labtit) 

3  ORDER OF STRING SUBSTITUTIONS

The above example illustrates that the order in which Ferret performs string substitutions and
evaluates immediate mode expressions in the command line is significant. The successful
evaluation of the embedded expression `($ppl$xlen)/2`  requires that ($ppl$xlen)  is
evaluated before attempting the divide by 2 operation. The order of Ferret string substitutions
is as follows:

1. substitute “GO” command arguments of the form “$1”, “$2”, ...
2. substitute symbols of the form ($symbol_name) (discussed here)
3. substitute command aliases
4. substitute immediate mode mathematical expressions 

For example, if the script snoopy.jnl contains

DEFINE SYMBOL fcn = $1
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=("Result is ",$2)
ANSWER `($fcn)(($3^2)/2)`+5

then the command

yes? GO snoopy EXP F5.2 2.25

would evaluate to

DEFINE SYMBOL fcn = EXP
DEFINE ALIAS ANSWER LIST/NOHEAD/FORMAT=("Result is ",F5.2)            
LIST/NOHEAD/FORMAT=("Result is ",F5.2) `EXP((2.25^2)/2)`+5 



HANDLING STRING DATA : “SYMBOLS ”     115

and would result in Ferret output of “Result is 17.57.” 

4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS

All of the plot labels generated by Ferret are automatically defined as symbols. This includes
the title ($labtit), X and Y axis labels ($labx),($laby), as well as the positions labels (latitude,
longitude, depth, time), which are normally placed at the upper left on a plot (see section 4,
“Labels”). Sometimes it is desirable to change the location, size or fonts of these labels. The
symbol facility makes it possible to do this in a way that is independent of the particular label
strings or plot aspect ratio. See the demonstration script symbol_demo.jnl for an example.

5  USING SYMBOLS IN COMMAND FILES

Often in Ferret command files the identical argument substitutions must  be repeated at several
points in the file. Using symbols it is possible to write “cleaner” Ferret scripts in which the
argument substitution occurs only once—to define a symbol which is used in place of the
argument thereafter. See the demonstration script symbol_demo.jnl for an example. 

6  PLOT+ STRING EDITING TOOLS

The PLOT+ program provides a variety of tools for editing symbol strings. See the PLOT+
Users Guide for further information. A sample usage:

yes? DEFINE SYMBOL test = my string
yes? PPL SET upper_test $EDIT(test,UPCASE)
yes? SHOW SYMBOL upper_test
UPPER_TEST = "MY STRING"

7 SYMBOL EDITING

Symbols may be edited and checked using the same controls that apply to journal file
arguments.

The section of this users guide entitled “Arguments to GO tools” describes the syntax for
checking and editing arguments. The identical syntax applies to symbols. As with the GO tool
arguments (e.g., “$4”), all string manipulations are case insensitive.

In brief, the capabilities include:



116    CHAPTER 7

default strings

If a symbol is undefined a default value may be provided using the pattern
($my_symbol%my default string%). For example,

($SHAPE%XY%)

check against list of acceptable values

A list of acceptable string values may be provided using the pattern
($my_symbol%|option 1|option 2|%). For example,

($SHAPE%|X|Y|Z|T|%)

will ensure that only 1-dimensional shapes (X, Y, Z, or T) are acceptable.

string substitution

Any of the optional string matches provided can invoke a substitution using the pattern
($my_symbol%|option 1>replacement|%). For example,

($SHAPE%|X>I|Y>J|Z>K|T>L|%)

will substitute I for X or J for Y, etc.

Asterisk (“*”) provides default substitution

The asterisk character matches any string. For example, 

($SHAPE%|X|Y|Z|T|*>other%)

will always result in “X,” “Y,” “Z,” “T,” or “other.” 

Asterisk (“*”) provides limited string edited

The asterisk character, when used on the right hand side of a string substitution, inserts the
original symbol contents 

($SHAPE%|*>The shape is *|%)

error message control

An error message can be provided if the symbol is undefined or doesn’t match any options.
The pattern for this is
($my_symbol%|option 1|option 2|<error message text %). For example,



HANDLING STRING DATA : “SYMBOLS ”     117

($SHAPE%|X|Y|Z|T|<Not a 1-dimensional shape%) 

8  SPECIAL SYMBOLS

There are two symbols, generated automatically by plots, which are not documented in the
PLOT PLUS for Ferret Users Guide. Those are

PPL$XPIXEL
PPL$YPIXEL

the number of pixels in the horizontal (X) and vertical (Y) size of the current Ferret output
window.



118    CHAPTER 7



COMPUTING ENVIRONMENT    119

Chapter 8: COMPUTING ENVIRONMENT

1 SETTING UP AN ACCOUNT

This discussion assumes that Ferret is already installed on your system. Installation
documentation is available separately from node abyss.pmel.noaa.gov.

STEP 1

Execute interactively or add to your .login file the Unix C-shell command

% source /usr/local/ferret_paths 

(Note: If this command doesn’t work consult your system manager, who may have placed
ferret_paths in a different directory.) 

The Ferret program requires access to several files and directories. These Unix paths are
stored in environment variables defined by the file “ferret_paths”. Your Unix account must
be “made aware” of where the Ferret utilities are located. This is done by adding to the
definition of your environment variable PATH the directory “$FER_DIR/bin”. Unless your
system manager has modified the typical setup, this will occur automatically when you
execute the above command. 

STEP 2 (personal customizations—optional)

Execute the “cp” command below:

% cp $FER_DIR/bin/my_ferret_paths_template \
          $HOME/my_ferret_paths

Then use a text editor to customize my_ferret_paths. Instructions are inside the file.

Some of the Ferret environment variables identify files and directories that are integral to
the Ferret program, but others identify files that you may maintain—your data files, GO
scripts, and palette files, for example. (The environment variables that you may want to
customize are discussed at the end of this section.) To assist in customizing the Ferret
environment variables the template file in the “cp” command, above, has been provided. The
file is self-explanatory.

STEP 3

Execute the command below interactively or add it to your .login file.

% setenv DISPLAY node:0.0     e.g.,  % setenv DISPLAY anorak:0.0



120    CHAPTER 8

This command sets the environment variable “DISPLAY” to point to the workstation
console or X-terminal where you want Ferret graphical output displayed. In the example
above, graphical output is directed to the screen of workstation “anorak.”

2  FILES AND ENVIRONMENT VARIABLES USED BY FERRET

.ferret—the Ferret initialization file.  This optional file holds a list of Ferret commands that
will be executed immediately each time Ferret is started, permitting Ferret to be tailored to
individual needs and styles. The file must be located in your $HOME (login) directory. A
simple way to set up such a file is to enter Ferret, enter the commands that you want executed
each time you enter Ferret, exit Ferret and rename the file “ferret.jnl” to “.ferret”. Thereafter,
all commands in “.ferret” will be executed automatically whenever you enter Ferret.

The following environment variables are defined in the file ferret_paths:

FER_DATA—a list of directories to be searched to locate data files. Usually this list includes
“.”, the current directory, and $FER_DSETS/data, a directory of sample data sets provided
with Ferret. Your system manager may have set this variable to include other data areas as
well. This is the list of directories searched to locate NetCDF files.

FER_DESCR—a list of directories to be searched to locate descriptor files. Descriptors are
required by Ferret to access data sets that are in Ferret’s “GT” (grids at timesteps) or “TS”
(time series) formats. Usually this list includes “.”, the current directory, and
$FER_DSETS/descr, a directory of sample descriptors provided with Ferret.

FER_GRIDS—a list of directories to be searched to locate grid definition files. Data sets will
usually have a grid definition file associated with them so that the grids on which the data
are defined may be known.

FER_DIR—top directory of the Ferret distribution on your system.

FER_DSETS—directory of sample data sets provided with the Ferret distribution.

FER_PALETTE—a list of directories to be searched to locate palette files. Usually this list
includes “.” and $FER_DIR/ppl.

FER_GO—a list of directories to be searched to locate GO scripts. This list usually includes
“.”, $FER_DIR/go, $FER_DIR/examples (demonstrations and tutorial), and
$FER_DIR/contrib (user contributions demonstrating various applications; accuracy not
guaranteed).



COMPUTING ENVIRONMENT    121

3  MEMORY USE

Ferret indicates memory problems by issuing the error message “insufficient memory.”  If
memory is a problem running Ferret the following suggestions may help:

1) Make sure that the region is fully defined (i.e., check SHOW REGION and check the region
qualifiers of your command). When the region along some axis is not specified Ferret
defaults to the full span of the data along that axis and is unable to optimize memory usage.
This is the most common cause of “insufficient memory” errors.

2) Use the command SET MEMORY/SIZE=nnn to increase the memory cache region available
to Ferret.

3) Use the command SET MODE DESPERATE to determine the threshhold size of memory
objects at which Ferret will break a large calculation into fragments. A smaller argument
value will induce stricter memory management but at a penalty in performance.

4) Use CANCEL MEMORY whenever you are sure that the data referenced thus far by Ferret
will not be referenced again. This is particularly appropriate to batch procedures that use
Ferret. This eliminates any memory fragmentation that may be left by previous commands.

5) Use CANCEL MODE SEGMENTS to minimize the memory usage by graphics  (on a  few
X-window systems this may prevent windows from being restored after they are obscured).

6) When using DEFINE VARIABLE (alias LET) avoid embedding upper and lower axis
bounds within the variable definition. Ferret cannot split up large calculations along axes
when the limits are fixed in the definition. For example,

yes? LET V2=TEMP/10
yes? PLOT/K=1:10 V2

is preferable to

yes? LET V2=TEMP[K=1:10]/10
yes? PLOT V2

7) Try to group together calculations that are on smaller dimensioned objects. For example, the
expression VAR[i=1:100, j=1:100]*2*PI will make less efficient use of cpu and memory
than the expression VAR[i=1:100, j=1:100]*(2*PI). The former multiplies each of the 10000
points of VAR by 2 and then performs a second multiplication of the 10000 result points by
PI. The latter computes the scalar 2*PI and uses it only once in multiplying the 10000 points
of VAR.



122    CHAPTER 8

4  HARD COPY AND METAFILE TRANSLATION

4.1 Hard copy

To obtain hard copy of plots produced by Ferret, follow these steps:

1) Within Ferret, enter the command 

yes? SET MODE METAFILE

This tells Ferret to generate a graphic metafile (ANSI/ISO GKSM format) for each plot
created thereafter. To stop making the metafiles type 

yes? CANCEL MODE METAFILE

2) Produce each plot as you would normally. Each new plot on your screen generates an
additional file named “metafile.plt.~n~” where “n” will be incremented for each metafile.
Overlay commands do not produce additional metafiles. (The metafile name may be set by
the SET MODE METAFILE command.)

3) After exiting from Ferret use the command Fprint. 

Note: If it is necessary to use Fprint without exiting Ferret, then issue the
command yes? PPL CLSPLT . This will close the current metafile. Note that
neither overlays nor additional viewports can be added to the plot after the
metafile has been closed.

Fprint is a script which translates metafiles generated by Ferret. It uses the program “gksm2ps”
and is intended to simplify sending plots to printers, to an output file only, or to a workstation
screen.

For monochrome printers the metafile translator, gskm2ps, uses different line styles (dash-dot
patterns) rather than colors for different lines. See Appendix I of Plotplus Plus: Enhancements
to Plotplus for a complete list of line styles for monochrome devices.

The Fprint script translates metafiles to Encapsulated PostScript or X-window output. Your
system manager should customize the script at your site to permit your specification of the
actual printers you have as output devices. Fprint uses standard Unix command line syntax.

 Fprint [-h] [-P printer || -o file_name || -X]
        [-p orient] [-# n] [-l line] [-R] metafile(s)

Options

-h displays help on your terminal.



COMPUTING ENVIRONMENT    123

-P printer Routes output to named printer. Files will not be renamed by previewing.
You will be prompted, however, with an option to delete each metafile after
previewing. The output window size will be equivalent to the default size in
Ferret (SET WINDOW/SIZE=0.7).

-o file_name Routes output to named disk postscript file.

-X Routes output to your workstation screen. Files will not be renamed by
previewing. You will be prompted, however, with an option to delete each
metafile after previewing. The output window size will be equivalent to the
default size in Ferret (SET WINDOW/SIZE=0.7).

-p orient The page orientation option determines whether the plot will be placed on the
page in landscape format, with the horizontal side longer than the vertical,
or portrait, with the vertical side longer. Valid option values are “landscape”
and “portrait”. The default behavior is to orient the plot to best fit the page.

-# n Specifies number of copies (n).

-l line This option lets you specify line styles. Valid options are “ps” and “cps”.
“ps” uses dot-dashed line types; “cps” uses colored lines. The default is “ps”
for monochrome printers and “cps” for color printers. 

-R Turns off the default behavior of the metafile translator to append a date
stamp to metafile names when they are sent to a printer or a disk file. The
default action is intended to distinguish metafiles that have been printed out;
this option keeps the metafile names unmodified.

Examples

% Fprint metafile.plt

renders “metafile.plt” on the default printer identified by the environment variable
PRINTER. 

% Fprint -P myprinter -R metafile.plt*

renders all versions of “metafile.plt” on printer myprinter. Does not date stamp them.

% Fprint -o my_plot.ps metafile.plt.~1~

writes plot “metafile.plt.~1~” to a postscript file named “my_plot.ps”. 



124    CHAPTER 8

4.2 Metafile translation

The command “gksm2ps” allows you to control the translation of the device-independent
metafiles made by Ferret into device-specific output files. “gksm2ps” was written by Larry
Oolman at the University of Wyoming and modified at NOAA/PMEL for use with Ferret. The
“gksm2ps” command uses standard Unix command line syntax. See usage hints provided by
the -h option.

gksm2ps [-h] [-p landscape||portrait] [-l ps||cps] [-d cps||phaser] \
         [-X || -o <ps_output_file>] [-R] [-a] [-g WxH+X+Y] file(s)

Options

-h prints help message.

-p orient The page orientation option determines whether the plot will be placed
on the page in landscape format, with the horizontal side longer than the
vertical, or portrait, with the vertical side longer. The default is to orient
the plot to best fit the page.

-l line This option permits specification of line styles in the hardcopy plot.
Valid options are “ps” (the default) and “cps”. “ps” renders lines as solid
and dot-dashed and is suited for monochrome printers. “cps” renders
lines in color.

-d devtype The target device type of the translator. If the -d option is omitted and
output is to a file gksm2ps will use devtype “ps”. 

Valid devtype values:
cps – color PostScript,

 phaser – Tektronix Phaser PX. The phaser is a PostScript
printer, but it uses transfer sheets that reduce the
usable page size.

-X Sends the output to your X-window for preview.

-o ofile The output will be directed to the file “ofile.” Omit both this and the
device type option when directing output to your workstation screen with
-X. If neither -o nor -X is specified, gksm2ps creates a postscript file in
the current directory called “gksm2ps_output.ps”.

-a Makes the plot the size of the original plot as specified in PPLUS inches
(absolute size), rather than fitting the plot to the page (the default
behavior).



COMPUTING ENVIRONMENT    125

-g WxH+X+Y The -g option (-g WxH+X+Y) provides detailed control over the size,
position, and aspect ratio of the plot on the printed page. The arguments
W, H, X, and Y are given in units of points (1/72 of an inch).

Normally when using this option you will want to specify an identical
value for both W and H—the size (in points) you want the longer
dimension of the plot to be. Unequal values of W and H will alter the
aspect ratio of the plot relative to its appearance on your workstation
screen.

The X and Y values are the offset of the lower left corner of the plot
from the lower left corner of the page.  If you want your plot’s longer
side to be 5 inches long, 3 inches right from the corner, and 2 inches up,
for example, specify

> gksm2ps -o my_plot.ps -g 360x360+216+144 my_file.plt
> lpr my_plot.ps

-R Turns off the default behavior of the metafile translator to append a date
stamp to metafile names when they are sent to a printer or a disk file. The
default action is intended to distinguish metafiles that have been printed
out; this option keeps the metafile names unmodified.

If the user does not specify an output option (-o or -X) gksm2ps translates the metafile and
produces a PostScript file called gksm2ps_output.ps. After translation by gksm2ps, metafiles
are renamed with a date stamp unless -R was specified. To get hard copy printed, the output
PostScript file needs to be sent to the appropriate printer. 

5  OUTPUT FILE NAMING

Ferret uses a file naming scheme to differentiate successive graphic metafiles and  journal files.
The scheme is styled after the gnu (Free Software Foundation) emacs editor. The scheme
appends numbers to the end of the file name as in the following examples:

metafile.plt.~2~
metafile.plt.~12~
metafile.plt

The third example, “metafile.plt” with no suffix appended, is the most recent file. When the
next successive file  is created, this file will have the suffix “.~nnn~” appended to its name.
“nnn” is the current highest file suffix number plus one. 

Two Unix tools are provided to assist with managing multiple file suffix numbers:



126    CHAPTER 8

Fpurge removes all but the current version of the named file (that is, all but the most recent).
Example:  % Fpurge ferret.jnl

Fsort sorts the versions of a file into increasing numerical order
Example:  % Fprint `Fsort metafile.plt*`

See Chapter 1 section “Unix tools” for further information.

6  INPUT FILE NAMING

There are several Ferret commands that use filenames. These include:

GO filename
SET DATA filename
LIST/FILE=filename  (do not use relative versions (below) with LIST)
USER/FILE=filename
SET MODE META filename
SET MODE JOURNAL filename
SET MODE PPLLIST filename

The filename specified can be just the filename itself, or it can include the path to the file. For
example:

GO ferret.jnl          or         GO "/home/disk1/jnl_files/far_side.jnl"

Note that if the path is specified as part of the filename, the entire name must be enclosed in
quotation marks. 

6.1 Relative version numbers

Under some circumstances (see the GO command) a special syntax called “relative version
numbers” will apply. If a filename has a version value of zero or less its value is interpreted
relative to the current highest version number. 

For example, if the current directory contains the files

ferret.jnl   ferret.jnl.~1~   ferret.jnl.~2~   ...  ferret.jnl.~99~   

then the filename ferret.jnl.~0~ refers to ferret.jnl and the filename ferret.jnl.~-1~ refers to
ferret.jnl.~99~. 

The syntax for relative version numbers is quite flexible. For example, if the desired file is
ferret.jnl.~99~, both of the following are valid:

yes? GO ferret.jnl.~-1~        or         yes? GO ferret.jnl~-1 



CONVERTING TO NETCDF FORMAT    127

Chapter 9: CONVERTING TO NetCDF

1  OVERVIEW

The Network Common Data Format (NetCDF) is an interface to a library of data access
routines for storing and retrieving scientific data. NetCDF allows the creation of data sets that
are self-describing and network-transparent. NetCDF was created under contract with the
Division of Atmospheric Sciences of the National Scientific Foundation and is available from
the Unidata Program Center in Boulder, Colorado (on Internet: unidata.ucar.edu).

This chapter provides directions for creating NetCDF data files. In addition to the
documentation provided here, refer to the NetCDF User’s Guide, published by Unidata
Program Center, for further guidance. A user who uses and creates NetCDF files within the
Ferret environment needs no additional software.

NetCDF is a very flexible standard. In most cases there are multiple styles or profiles that could
be used to encode data into NetCDF. To resolve the ambiguities inherent in this multiplicity
communities of users have banded together to develop profiles—documents that provide more
detail on how data should be encoded into NetCDF. Ferret adheres to the COARDS standard.
The full standard is available through the Ferret home page on the World Wide Web.

2  SIMPLE CONVERSIONS USING FERRET

In straightforward conversion operations where ASCII or unformatted binary data files are
already readable by Ferret, the conversion to direct access, self-describing NetCDF formatted
data can be accomplished by Ferret itself. The following set of examples illustrates these
procedures:

Example 1

Consider an ASCII file uv.data, with two variables, u and v, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a NetCDF
formatted data set:

yes? DEFINE AXIS/x=1:360:1/units=degrees xaxis
yes? DEFINE AXIS/y=1:180:1/units=degrees yaxis
yes? DEFINE GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR="u,v"  uv.data
yes? SET VARIABLE/TITLE="zonal velocity" u
yes? SAVE/FILE=uv.cdf u,v



128    CHAPTER 9

See command DEFINE AXIS in the Commands Reference. See Chapter 4 for setting up
formatted latitude, longitude and time axes.
  
Example 2

Consider now two separate ASCII files, u.data and v.data, defined on a grid 360 by 180. The
following set of commands will properly read in u and v and convert them to a single NetCDF
formatted data set:

yes? DEF AXIS/x=1:360:1/units=degrees xaxis
yes? DEF AXIS/y=1:180:1/units=degrees yaxis
yes? DEF GRID/x=xaxis/y=yaxis uv_grid
yes? FILE/GRID=uv_grid/BAD=-999/VAR=u u.data
yes? FILE/GRID=uv_grid/BAD=-999/VAR=v v.data
yes? SAVE/FILE=uv2.cdf u[D=1]
yes? SAVE/APPEND/FILE=uv2.cdf v[D=2]

Example 3—multiple time steps

Consider 12 ASCII files, uv.data1 to uv.data12, each defined on the same grid as above but
each representing a successive time step. The following set of commands illustrates how to save
these data into a single NetCDF data set (time series):

yes? DEF AXIS/x=1:360:1 xaxis
yes? DEF AXIS/y=1:180:1 yaxis
yes? DEF AXIS/t=1:1:1 taxis1
yes? DEF GRID/x=xaxis/y=yaxis/t=taxis1 uv_grid1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data1
yes? SAVE/FILE=uv1_12t.cdf u,v
yes? CANCEL DATA uv.data1
yes? DEF AXIS/t=2:2:1 taxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v" uv.data2
yes? SAVE/APPEND/FILE=uv1_12t.cdf u,v
. . .

and so on, redefining the time axis to be 3:3:1, 4:4:1, ... each time a new file is set.

Example 4—multiple slabs

The procedure used in example 3, above, is possible because NetCDF files can be extended
along the time axis. In order to append multiple levels (Z axis), the NetCDF file must first be
created including all of its vertical levels (the levels initially are filled with a missing data flag).

Consider 5 ASCII files, uv.data1 to uv.data5, each defined on the same grid as above but each
representing a successive vertical level. The following set of commands illustrates how to save
these data into a single NetCDF data set:



CONVERTING TO NETCDF FORMAT    129

yes? DEF AXIS/x=1:360:1  xaxis
yes? DEF AXIS/y=1:180:1  yaxis
yes? DEF AXIS/Z=0:100:25/DEPTH  zaxis
yes? DEF GRID/X=xaxis/Y=yaxis/Z=zaxis uv_grid
yes? DEF AXIS/Z=0:0:1  zaxis1
yes? DEF GRID/LIKE=uv_grid/Z=zaxis1  uv_grid1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v"  uv.data1
yes? LET/TITLE="My U data"  u1 = u[G=uv_grid]
yes? LET/TITLE="My V data"  v1 = v[G=uv_grid]
yes? SAVE/FILE=uv1_5z.cdf/ KLIMITS=1:5   u1, v1
yes? DEF AXIS/Z=25:25:1  zaxis1
yes? FILE/GRID=uv_grid1/BAD=-999/VAR="u,v"  uv.data2
yes? SAVE/FILE=uv1_5z.cdf/APPEND  u1,v1
. . .

The NetCDF utilities  “ncdump” and “ncgen” can also be combined with a text editor to make
final refinements to the NetCDF files created by SAVE. (These utilities are not provided with
the Ferret distribution; they can be obtained from unidata.ucar.edu.)  Here is a simple example
that removes all “history” attributes from a NetCDF file using pipes and the Unix “grep” utility:

% ncdump old_file.cdf | grep -v history | ncgen -o new_file.cdf

3  WRITING A CONVERSION PROGRAM

There are three steps required to convert data to NetCDF if your data is not already readable
by Ferret:

1. Create a CDL (the ASCII NetCDF Description Language) file that describes the axes, grids,
and variables of the desired output data set. Note: Ferret itself often provides the simplest
way to create the CDL file (see 3.1 below).

2. Convert this CDL file into a NetCDF file with the ncgen utility.

3. Create a program that will read your particular data and insert them into the NetCDF file.
The ncgen utility will create most of the FORTRAN or C code needed for this task.

The file converting_to_netcdf.f which is located in the Ferret documentation directory
($FER_DIR/doc) contains a complete description and example of these 3 steps. The remainder
of this section provides further details.

3.1  Creating a CDL file with Ferret

Suppose that we wish to create a CDL file to describe a data set entitled “My Global Data”
which contains variables u and v in cm/sec on a 5×5 degree global lat/long grid. The following
commands would achieve the goal with Ferret doing the majority of the work: 



130    CHAPTER 9

•  From Ferret issue the commands

DEFINE AXIS/X=2.5E:2.5W:5/UNITS=degrees xlong
DEFINE AXIS/Y=87.5S:87.5N:5/UNITS=degrees ylat
DEFINE GRID/X=xlong/Y=ylat my_grid
LET shape_2d =  x[G=my_grid]+y[G=my_grid]
LET U = 1/0*SHAPE_2D
LET V = 1/0*SHAPE_2D
SET VARIABLE/TITLE="Zonal Velocity"/UNITS="cm/sec" u
SET VARIABLE/TITLE="Meridional Velocity"/UNITS="cm/sec" v 
SAVE/FILE=my_file.cdf/TITLE="My Global Data" u,v
QUIT

•  From Unix issue the command

ncdump -c my_file.cdf > my_file.cdl

The resulting file my_file.cdl is ready to use or to make final modifications to with an editor.

3.2  The CDL file

A CDL file consists of three sections: Dimensions, Variables, and Data. All of the following
text in Courier font  constitutes a real CDL file; it can be copied verbatim and used to
generate a NetCDF file. The full text of this file is included with the Ferret distribution as
$FER_DIR/doc/converting_to_netcdf.basic.

netcdf converting_to_netcdf.basic {

3.2.1 Dimensions

In this section, the sizes of the grid dimensions are specified. One of these dimensions can be
of “unlimited” size (i.e., it can grow). 

dimensions:

lon   = 160 ; //  longitude
lat   = 100 ; //  latitude
depth = 27 ; //  depth
time  = unlimited ;

These are essentially parameter statements that assign certain numbers that will be used in the
Variables section to define axes and variable dimensions. The “//” is the CDL comment syntax.

3.2.2 Variables

Variables, variable attributes, axes, axis attributes, and global attributes are specified.



CONVERTING TO NETCDF FORMAT    131

variables:

float temp(time, depth, lat, lon) ;
      temp: long_name = "TEMPERATURE" ;
      temp: units     = "deg. C" ;
      temp: _FillValue = 1E34 ;
float salt(time, depth, lat, lon) ;
      salt: long_name = "(SALINITY(ppt) - 35) /1000" ;

   salt: units     = "frac. by wt. less .035" ;
      salt: _FillValue = -999. ;

The declaration “float” indicates that the variable is to be stored as single precision, floating
point (32-bit IEEE representation). The declarations “long” (32-bit integer), “short” (16-bit
integer), “byte” (8-bit integer) and “double” (64-bit IEEE floating point) are also supported by
Ferret. Note that although these data types may result in smaller files, they will not affect
Ferret’s memory usage, as all variables are converted to “float” internally as they are read by
Ferret. 

Variable names in NetCDF files should follow the same guidelines as Ferret variable names:

• case insensitive (avoid names that are identical apart from case)
• 1 to 24 characters (letters, digits, $ and _) beginning with a letter
• avoid reserved names (I, J, K, L, X, Y, Z, T, XBOX, ...)

The _FillValue attribute informs Ferret that any data value matching this value is a missing
(invalid) data point. For example, an ocean data set may label land locations with a value such
as 1E34. By identifying 1E34 as a fill value, Ferret knows to ignore points matching this  value.
The attribute “missing_value” is similar to “_FillValue” when reading data; but “_FillValue”
also specifies a value to be inserted into unspecified regions during file creation. You may
specify two distinct flags for invalid data in the same variable by using “_FillValue” and
“missing_value” together.

Ferret variables may have from 1 to 4 dimensions. If any of the axes have the special
interpretations of: 1) latitude, 2) longitude, 3) depth, or 4) time (date), then the relative order
of those axes in the CDL variable declaration must be T, then Z, then Y, and then X, as above.
Any of these special axes can be omitted and other axes (for example, an axis called “distance”)
may be inserted between them.

axis definitions:

double lon(lon) ;
       lon: units = "degrees";
double lat(lat) ;
       lat: units = "degrees";
double depth(depth) ;
       depth: units = "meters";
double time(time) ;
       time: units = "seconds since 1972-01-01";



132    CHAPTER 9

Axes are distinguished from other 1-dimensional NetCDF variables by their variable names
being identical to their dimension names. Special axis interpretations are inferred by Ferret
through a variety of “clues.” 

Date/time axes are inferred by units of “years,” “days,” “hours,” “minutes,” or “seconds,” or
by axis names “time,” “date,” or “t” (case-insensitive). Calendar date formatting requires the
“units” attribute to be formatted with both a valid time unit and “since dd-mm-yyyy”. 

Vertical axes are identified by axis names containing the strings “depth”, “elev”, or “z”, or by
units of “millibars.” Depth axes are positive downward by default. The attribute positive=
“down” can also be used to create a downward-pointing axis.

Latitude axes are inferred by units of “degrees” or “latitude” with axis names containing the
strings “lat” or “y”. Longitude axes are inferred by units of “degrees” or “longitude” with axis
names containing the strings “lon” or “x”.

Global attributes, or attributes that apply to the entire data set, can be specified as well.

global attributes:
:title = "NetCDF Example";

     :message = "This message will be displayed when the CDF file is
opened by Ferret";

:history = " Documentation on the origins and evolution of this data
set or variable";

3.2.3  Data

In this section, values are assigned to grid coordinates and to the variables of the file. Below
are 100 latitude coordinates entered (in degrees) into the variable axis “lat”, 160 longitude
coordinates in “lon”, and 27 depth coordinates (in meters) in “depth”. Longitude coordinates
must be specified with 0 at Greenwich, continuous across the dateline, with positive eastward
(modulo 360).
 
data:

lat=
-28.8360729218,-26.5299491882,-24.2880744934,-22.1501560211,-20.151357650,
-18.3207626343,-16.6801033020,-15.2428140640,-14.0134353638,-12.987424850,
-12.1513509750,-11.4834814072,-10.9547319412,-10.5299386978,-10.169393539,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,



CONVERTING TO NETCDF FORMAT    133

3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
lon=
130.5,131. 5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,14
2.5,143.5, 144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,154.
5,155.5,15 6.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,166.5,
167.5,168. 5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,178.5,17
9.5,180.5, 181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,190.5,191.
5,192.5,19 3.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,202.5,203.5,
204.5,205. 5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,214.5,215.5,21
6.5,217.5, 218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,226.5,227.5,228.
5,229.5,23 0.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,238.5,239.5,240.5,
241.5,242. 5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,250.5,251.5,252.5,25
3.5,254.5, 255.5,256.5,257.5,258.5,259.5,260.5,261.5,262.5,263.5,264.5,265.
5,266.5,26 7.5,268.5,269.5,270.5,271.5,272.5,273.5,274.5,275.5,276.5,277.5,
278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.5,286.5,287.5,288.5,289.5;
depth=
5.0,15.0,2 5.0,35.0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0
,177.5,205 .0,240.0,288.5,362.5,483.5,680.0,979.5,1395.5,1916.0,2524.0,3174
.0,3824.0;  }

To use this CDL file type:

% ncgen -o my_data.cdf converting_to_netcdf.basic

This will will create a file called “my_data.cdf” to which data can be directed (see next section).

Another NetCDF command, “ncdump”, can be used to generate a CDL file from an existing
NetCDF file. The command

% ncdump -h my_data.cdf

will list the CDL representation of a preexisting my_data.cdf without the Data section, while

% ncdump my_data.cdf

will list the CDL file with the Data section. The command

% ncdump -c my_data.cdf

will create a CDL file in which only coordinate variables are included in the Data section. The
listed output can be redirected to a file as in the command



134    CHAPTER 9

% ncdump -c my_data.cdf > my_data.cdl

3.3  Standardized NetCDF attributes

A document detailing the COARDS NetCDF conventions to which the Ferret program adheres
are available on line through the Ferret home page on the World Wide Web and at

http://www.unidata.ucar.edu/packages/netcdf/conventions.html 

The following are the attributes most commonly used with Ferret. They are described in greater
detail in the reference document named above.

Global Attributes
:title = “my data set title”
:history = “general background information”

Data Variable Attributes
long_name = “title of my variable”
units = “units for this variable”
_FillValue = missing value flag
missing_value = alternative missing value flag
scale_factor = (optional) the data are to be multiplied by this factor 
add_offset = (optional) this number is to be added to the data 

Special Coordinate Variable Attributes
time_axis:units = “seconds since 1992-10-8 15:15:42.5 -6:00"; // example
y_axis:units = “degrees_north”
x_axis:units = “degrees_east”
z_axis:positive = “down”; // to indicate preferred plotting orientation
my_axis:point_spacing = “even”; // improved performance if present 

 
3.4  Directing data to a CDF file

The following is an example program which can be used on-line to convert existing data sets
into NetCDF files. It also should provide guidance on sending data generated by numerical
models directly to NetCDF files. This program assumes you have created the NetCDF file as
described in the previous section. It is included in the distribution as $FER_DIR/doc/
converting_to_netcdf.f.

program converting_to_netcdf

c written by Dan Trueman
c updated 4/94 *sh*
      
c This program provides a model for converting a data set to NetCDF.
c The basic strategy used in this program is to open an existing NetCDF



CONVERTING TO NETCDF FORMAT    135

c file, query the file for the ID's of the variables it contains, and
c then write the data to those variables.
      
c The output NetCDF file must be created **before** this program is run.
c The simplest way to do this is to cd to your scratch directory and
c    % cp $FER_DIR/doc/converting_to_netcdf.basic converting_to_netcdf.cdl
c and then edit converting_to_netcdf.cdl (an ASCII file) to describe YOUR
data
c set.  If your data set requires unequally spaced axes, climatological time
c axes, staggered grids, etc. then converting_to_netcdf.supplement may be
c a better starting point then the "basic" file used above.
c After you edit converting_to_netcdf.cdl then create the NetCDF file with
c the command
c    % ncgen -o converting_to_netcdf.cdf converting_to_netcdf.cdl
      
c Now we will read in **your** data (gridded oceanic temperature and
c salt in this example) and write it out into the NetCDF file
c converting_to_netcdf.cdf.  Note that the axis coordinates can be written
c out exactly the same methodology - including time step values (as below).
*************************************************************************
c An alternative to modifying this program is to use the command:
      
c     ncgen -f converting_to_netcdf.cdl
      
c This will create a large source code to which select lines can 
c be added to write out your data.
*************************************************************************
c To compile and link converting_to_netcdf.f, use:
      
c     f77 -o converting_to_netcdf converting_to_netcdf.f -lnetcdf
      
*************************************************************************
c include file necessary for NetCDF
      
      include 'netcdf.inc'    ! may be found in $FER_DIR/fmt/cmn
*************************************************************************
c parameters relevant to the data being read in
c THESE NORMALLY MATCH THE DIMENSIONS IN THE CDL FILE
c (except nt which may be "unlimited")
      
      integer imt, jmt, km, nt, lnew, inlun
      parameter (imt=160, jmt=100, km=27, nt=5)
      
c imt is longitude, jmt latitude, km depth, and nt number of time steps 
*************************************************************************
c variable declaration
      
      real temp(imt,jmt,km),salt(imt,jmt,km),time_step
      
      integer cdfid, rcode
c           ** cdfid = id number for the NetCDF file my_data.cdf
c     ** rcode = error id number



136    CHAPTER 9

      
      integer tid, sid, timeaxid
c           ** tid = variable id number for temperature
c           ** sid = variable id number for salt
c           ** timeaxid = variable id for the time axis
      integer itime
c           ** itime = index for do loop
*************************************************************************
c dimension corner and step for defining size of gridded data
      
      integer corner(4)
      integer step(4)
      
c corner and step are used to define the size of the gridded data 
c to be written out.  Since temp and salt are four dimensional arrays,
c corner and step must be four dimensions as well.  In each output
c to my_data.cdf within the do loop, the entire array of data (160 long. 
c pts, 100 lat. pts., 27 depth pts.) will be written for one time step.
c Corner tells NetCDF where to start, and step indicates how many steps
c in each dimension to take.
      
      data corner/1, 1, 1, -1/      ! -1 is arbitrary; the time value
                                    ! of corner will be initialized
                                    ! within the do loop.
      
      data step/imt, jmt, km, 1/    ! NOT /1, km, jmt, imt/
      
c ***NOTE*** Since Fortran and C access data differently, the order of
c the variables in the Fortran code must be opposite that in the CDL
c file.  In Fortran, the first index varies fastest while in C, the
c last index varies fastest.
**************************************************************************
c initialize cdfid by using ncopn
      
      cdfid = ncopn('converting_to_netcdf.cdf', ncwrite, rcode)
      if (rcode.ne.ncnoerr) stop 'error with ncopn'
      
**************************************************************************
c get variable id's by using ncvid
c THE VARIABLE NAMES MUST MATCH THE CDL FILE (case sensitive)
      
      tid = ncvid(cdfid, 'temp', rcode)
      if (rcode.ne.ncnoerr) stop 'error with tid'
      sid = ncvid(cdfid, 'salt', rcode)
      if (rcode.ne.ncnoerr) stop 'error with sid'
      timeaxid = ncvid(cdfid, 'time', rcode)
      if (rcode.ne.ncnoerr) stop 'error with timeaxid'      
**************************************************************************
c this is a good place to open your input data file
      ! OPEN (FILE=my_data.dat,STATUS='OLD')
**************************************************************************
c begin do loop.  Each step will read in one time step of data



CONVERTING TO NETCDF FORMAT    137

c and then write it out to my_data.cdf. 
      
      do 10 itime = 1, nt
      
      corner(4) = itime             ! initialize time step in corner
      time_step = float(itime)      ! or you may read this from your file
      
* insert your data reading routine here
!      CALL READ_MY_DATA(temp,salt)  ! you write this
      
      write (6,*) 'writing time step: ',itime, time_step   ! diagnostic
output
 
      call ncvpt(cdfid,tid,corner,step,temp(1,1,1),rcode)  ! write data to
      if (rcode.ne.ncnoerr) stop 'error with t-put'
      call ncvpt(cdfid,sid,corner,step,salt(1,1,1),rcode)  ! my_da ta.cdf with
      if (rcode.ne.ncnoerr) stop 'error with s-put'
      call ncvpt1(cdfid,timeaxid,itime,time_step,rcode)    ! ncvpt
      if (rcode.ne.ncnoerr) stop 'error with timax-put'
      
c ncvpt1 writes a single data point to the specified location within 
c timeaxid. The itime argument in ncvpt1 specifies the location within 
c time to write. 
c float(itime) is used (rather than simply itime) so the type matches the 
c type of time declared in the CDL file.
      
10    continue
**************************************************************************
c close my_data.cdf using ncclos
      call ncclos(cdfid, rcode)
      if (rcode.ne.ncnoerr) stop 'error with ncclos'
**************************************************************************
      stop
      end

3.5  Advanced NetCDF procedures

This section describes:

1. Setting up a CDL file capable of handling data on staggered grids.
2. Defining coordinate systems such that the data in the NetCDF file may be regarded as

hyperslabs of larger coordinate spaces.
3. Defining boundaries between unevenly spaced axis coordinates (used in numerical

integrations).
4. Setting up “modulo” axes such as climatological time and longitude.
5. Converting dates into numerical data appropriate for a NetCDF time axis.

The final section of this chapter contains the text of the CDL file for the example we use
throughout this section.



138    CHAPTER 9

In this sample data set, we will consider wind, salt, and velocity calculated using a
staggered-grid, finite-difference technique. The wind data is limited to the surface layer of the
ocean (i.e., normal to the depth axis). We will also consider the salt data to be limited to a
narrow slab from 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for all depth
and time values.

3.5.1 Staggered grid

Ferret permits each variable of a NetCDF file to be defined on distinct axes and grids.
Staggered grids are a straightforward application of this principle. Dimensions for each grid
axis must be defined, the axes themselves must be defined (in Variables), and the coordinate
values for each axis must be initialized (in Data). In the case of the example we use throughout
this and the next section, there are two grids—a wind grid, and a velocity grid; slon, slat and
sdepth are defined for the wind grid, and ulon, ulat, and wdepth for the velocity grid. The
variables are then given dimensions to place them in their proper grids (i.e., wind(time, sdepth,
slat, slon)).

3.5.2 Hyperslabs

There are a number of steps required to set up a NetCDF data set that represents a hyperslab
of data from a larger grid definition (a parent grid). 

1. Define a dimension named “grid_definition.” This dimension should be set equal to 1.

2. Define parent grids in Variables with the argument “grid_definition”.

char wind_grid(grid_definition) ;
char salt_grid(grid_definition) ;

3. Define the 4 axes of the parent grids using the “axes” attribute.

wind_grid: axes = "slon slat normal time" ;
salt_grid: axes = "slon slat sdepth time" ;

The arguments are always a list of four axis names. Note that the order of arguments is
opposite that in the variable declaration. The argument  “normal” indicates that wind_grid
is normal to the depth axis. 

4. Define the variables that are hyperslabs of these grids with the proper dimensions. 

float wind(time, slat, slon) ;  
float salt(time, sdepth, slat80_82, slon10_140) ;

where the dimension slat80_82 = 3 and slon10_140 = 131. Optionally, these axes may  be
defined themselves with  the attribute “child_axis”.

 



CONVERTING TO NETCDF FORMAT    139

float slat80_82(slat80_82) ;
slat80_82: child_axis = " " ;

These “child axes” need not be initialized in data, nor do edges need to be defined for them;
Ferret will retrieve this information from the parent axis definitions. However, it is
recommended that they be initialized to accommodate other software that may not recognize
parent grids.

 
5. Use the “parent_grid” variable attribute to point to the parent grid.

wind: parent_grid = "wind_grid"
salt: parent_grid = "salt_grid" 

6. Also, as a variable attribute, define the index range of interest within the parent grid.

wind: slab_min_index = 1s, 1s, 1s, 0s ;
wind: slab_max_index = 160s, 100s, 1s, 0s ;
salt: slab_min_index = 10s, 80s, 1s, 0s ;
salt: slab_max_index = 140s, 82s, 27s, 0s ;

The “s” after each integer indicates a “short” 16-bit integer rather than the default “long”
32-bit integer. If an axis dimension is designated as “unlimited” then the index bounds for
this axis must be designated as “0s”.

These attributes will effectively locate the wind and salt data within the parent grid.

3.5.3  Unevenly spaced coordinates

For coordinate axes with uneven spacing, the boundaries between each coordinate can be
indicated by pointing to an additional axis that contains the locations of the boundaries. The
dimension of this “edge” axis is necessarily one larger than the coordinate axis concerned. If
edges are not explicitly defined for an unevenly spaced axis, the midpoint between coordinates
is assumed by default.

3. Define a dimension one larger than the coordinate axis. For the sdepth axis, with 27  
coordinates, define:

sdepth_edges = 28 ;

2. Define an axis called sdepth_edges.
3. Initialize this axis with the desired boundaries (in Data).
4. As an attribute of the main axis, point to edges list:

 sdepth: edges = "sdepth_edges" ;



140    CHAPTER 9

3.5.4  Evenly spaced coordinates (long axes)

If the coordinate axes are evenly spaced, the attribute “point spacing” should be used:

slat: point_spacing = "even" ;

When used, this attribute will improve memory use efficiency in Ferret. This is especially
important for very large axes—10,000 points or more. 

3.5.5  “Modulo” axes

The “modulo” axis attribute indicates that the axis wraps around, the first point immediately
following the last. The most common uses of modulo axes are:

1. longitude axes for globe-encircling data
2. time axes for climatological data

time: modulo = " " ;  // any arbitrary string is allowed

If the climatological data occurs in the years 0000 or 0001 then the year will be omitted from
Ferret’s output format.

3.5.6  Reversed-coordinate axes

NetCDF axes may contain monotonically decreasing axis coordinates instead of monotonically
increasing coordinates. Ferret will hide this aspect of the file data ordering.

3.5.7  Converting time word data to numerical data

To set up a time axis for data represented as dates (e.g., “1972 January 15 at 12:15") it is
necessary to determine a numerical representation for each of the dates. Ferret can assist with
this process, as the following example shows.

Suppose the data are 6-hourly observations from 1-JAN-1991 at 12:00 to 15-MAR-1991 at
18:00. These commands will assist in creating the necessary time axis for a NetCDF file:

yes? DEFINE AXIS/T="1-JAN-1991:12:00":"15-MAR-1991:18:00":6/UNITS=hours\
 my_time

yes? DEFINE GRID/T=my_time tgrid
yes? SET REGION/T="1-JAN-1991:12:00":"15-MAR-1991:18:00"
yes? LIST T[g=tgrid] !to see the time values
yes? SAVE/FILE=my_time.cdf T[g=tgrid]

The file my_time.cdf now contains a model of exactly the desired time axis. Use the Unix
command



CONVERTING TO NETCDF FORMAT    141

% ncdump my_time.cdf > my_time.cdl

to obtain the time axis definition as text that can be inserted into your CDL file.

3.6  Example CDL file

The following is an example CDL file utilizing many of the features described in the preceding
section.

netcdf converting_to_netcdf_supplement {
//      CONVERTING DATA TO THE "NETWORK COMMON DATA FORM" (NetCDF): 
//                         A SUPPLEMENT
//
// NOAA PMEL Thermal Modeling and Analysis Project (TMAP)
// Dan Trueman, Steve Hankin
// last revised: 1 Dec 1993:  slat80_82 and slon10_140 coordinates included
//
// I. INTRODUCTION
//
// This supplement to "Converting Data to the Network Common Data Form:
// an Introduction" describes:
//
//      1. How to set up a cdl file capable of handling data
//         on staggered grids.
//      2. How to define coordinate systems such that the data
//         in the NetCDF file may be regarded as hyperslabs of 
//         larger coordinate spaces.
//      3. How to define variables of 1, 2, or 3 dimensions.
//      4. How to define boundaries between unevenly spaced axis
//         coordinates (used in numerical integrations).
//      5. How to set up climatological "modulo" time axes.
//      6. How to convert time word data into numerical data 
//         appropriate for NetCDF.
//
// In this sample data set, we will consider wind, salt, and 
// velocity calculated using a staggered-grid, finite-difference 
// technique. The wind data is naturally limited to the surface 
// layer of the ocean (i.e. normal to the  depth axis).  We will 
// also consider the salt data to be limited to a narrow slab from
// 139E to 90W (I=10 to 140), 32.5N to 34.9N (J=80 to 82), and for
// all depth and time values.
//
// II. STAGGERED GRIDS
//
// Dealing with staggered grids is fairly straightforward.  Dimensions 
// for each grid axis must be defined, the axes themselves must be 
// defined (in Variables), and the coordinate values for each axis must
// be initialized (in Data).  In this case, there are two grids, a 
// wind grid, and a velocity grid, so tlon, tlat and tdepth are
// defined for the wind grid, and ulon, ulat, and udepth for the velocity
// grid.  The variables are then given arguments to place them in their



142    CHAPTER 9

// proper grids (i.e. wind(time, sdepth, slat, slon)).
//
// III. HYPERSLABS
//
// There are a number of steps required to set up a NetCDF data set that
// represents a hyperslab of data from a larger grid definition.
//
//      1. Define a dimension named "grid_definition".  This dimension
//         should be set equal to 1.
//      2. Define parent grids in Variables with the argument 
//         "grid_definition".
//
//              char wind_grid(grid_definition) ;
//              char salt_grid(grid_definition) ;
//
//      3. Define the 4 axes of the parent grids using the "axes" attribute.
//
//                   wind_grid: axes = "slon slat normal time" ;
//                   salt_grid: axes = "slon slat sdepth time" ;
//         
//         Note that the order of arguments is opposite that in the
//         variable declaration.  The argument "normal" indicates that
//         wind_grid is normal to the depth axis.
//
//      4. Define the variables which are hyperslabs of these grids with
//         the proper dimensions. 
//
//              float wind(time, slat, slon) ;  
//              float salt(time, sdepth, slat80_82, slon10_140) ;
//
//         where slat80_82 = 3 and slon10_140 = 131. The axis names are
///        arbitrary - chosen for readability. These axes (child axes)
//         must be defined with the attribute "child_axis" as follows:
// 
//              float slat80_82(slat80_82) ;
//                    slat80_82: child_axis = " " ;
//
//         These "child axes" need not be initialized in Data, nor do their
//         edges need be defined; Ferret retrieves this information from 
//         the parent axes.
//
//      5. Use the "parent_grid" variable attribute to point to the 
//         parent grid.
//
//                   wind: parent_grid = "wind_grid" 
//
//      6. Also as a variable attribute, define the index range of interest
//         within the parent grid.
//
//                   wind: slab_min_index = 1s, 1s, 1s, 0s ;
//                   wind: slab_max_index = 160s, 100s, 1s, 0s ;
//                   salt: slab_min_index = 10s, 80s, 1s, 0s ;



CONVERTING TO NETCDF FORMAT    143

//                   salt: slab_max_index = 140s, 82s, 27s, 0s ;
//
//         The "s" after each integer indicates a "short" 16-bit integer
//         rather than the default "long" 32-bit integer.  If an axis
//         dimension is designated as "unlimited" then the index bounds
//         for this axis must be designated as "0s".
//
// These commands will effectively locate the wind and salt data within
// the full grid.
//
// IV. VARIABLES OF 1, 2, or 3 DIMENSIONS
//
// One, two, or three dimensional variables may be set up in one of
// two ways - either using the parent_grid and child_axis attributes
// as illustrated in the 3-dimensional variable "wind" from the hyperslab
// example, above, or by selecting axis names and units that provide
// Ferret with adequate hints to map this variable onto 4-dimensional
// space and time.  The following hints are recognized by Ferret:
// 
//      Units of days, hours, minutes, etc. or an axis name of "TI ME", "DATE"
//         implies a time axis.
//      Units of "degrees xxxx" where "xx xx" contains "lat" or "lon" implies
//         a latitude or longitude axis, respectively.
//      Units of "degrees" together with an axis name containing "LAT" or
//         "Y" implies a latitude axis else longitude is assumed.
//      Units of millibars, "layer" or "level" or an axis name containing
//         "Z" or "ELEV" implies a vertical axis.
//
// V. UNEVENLY SPACED COORDINATE BOUNDARIES
//
// For coordinate axes with uneven spacing, the boundaries between each 
// coordinate can be indicated by pointing to an additional axis that
// contains the locations of the boundaries.  The dimension of this "edge"
// axis will necessarily be one larger than the coordinate axis concerned.
// If edges are not defined for an unevenly spaced axis, the midpoint 
// between coordinates will be assumed by default.
//
//      1. Define a dimension one larger than the coordinate axis.  For
//         the sdepth axis, with 27 coordinates, define:
//
//              sdepth_edges = 28 ;
//
//      2. Define an axis called sdepth_edges.
//      3. Initialize this axis appropriately (in Data).
//      4. As a sdepth axis attribute, point to sdepth_edges:
//
//                   sdepth: edges = "sdepth_edges" ;
//
// If the coordinate axes are evenly spaced, the attribute "point spacing"
// should be used:
//
//                   slat: point_spacing = "even" ;



144    CHAPTER 9

//
// When used, this attribute will improve memory use efficiency in Ferret.
//
// VI. CLIMATOLOGICAL "MODULO" AXES
//
// The "modulo" axis attribute indicates that the axis wraps around,
// the first point immediately following the last.  The most common
// uses of modulo axes are:
//
//      1. As longitude axes for globe-encircling data.
//      2. As time axes for climatological data.
//
//                   time: modulo = " " ; // any arbitrary string is allowed
//
// If the climatological data occurs in the years 0000 or 0001 then Ferret
// will omit the year from the output formatting.
//
// VII. CONVERTING TIME WORD DATA TO NUMERICAL DATA
//
// If the time data being converted to Ne tCDF format exists in string format
// (i.e. 1972 - JANUARY 15 2:15:00), rather than numerical format (i.e. 55123
// seconds) a number of TMAP routines are available to aid in the conversion
// process.  The steps required for conversion are as follows:
//
//      1. Break the time string into its 6 pieces.  If the data is of the
//         form dd-mmm-yyyy:hh:mm:dd, the TMAP routine "tm_break_date.f" can
//         be used.
//      2. Choose a time_origin before the beginning of the time data to 
//         assure that all time values are positive.  i.e. if the data begins
//         at 15-JAN-1982:05:30:00, choose a time origin of 
//         15-JAN-1981:00:00:00. This time_origin should then be an attribute
//         of the time axis variable in the CDL file.
//      3. Produce numerical time data by using "tm_sec_from_bc.f", which
//         calcu lates the number of seconds between 01-01-0000:00:00:00 and
//       the date specified.  Continuing the example from (2), the time value
//         for the first time step with respect to the time_origin could be
//         calculated as follows:
//
//         time(1) = tm_sec_from_bc(1982, 1, 15, 5, 30, 0) - 
//                   tm_sec_from_bc(1981, 1, 15, 0, 0, 0) 
//
//         or more generally
//
//       time(n)=tm_sec_from_bc(nyear,nmonth,nday,nhour,nminute,nsecond) -
//                   tm-sec_from_bc(oyear ,omonth,oday,ohour,ominute,osecond)
//
//        where nyear is the year for the nth time step and oyear is the year
//         of time_origin.
//
// VII. EXAMPLE CDL FILE
dimensions:
 



CONVERTING TO NETCDF FORMAT    145

// staggered grid dimension definitions:
 
        slon = 160 ;    // wind/salt longitude dimension
        ulon = 160 ;    // velocity longitude dimension
        slat = 100 ;    // wind/salt latitude dimension
        ulat = 100 ;    // velocity latitude dimension
        sdepth = 27 ;   // salt depth dimension
        wdepth = 27 ;   // velocity depth dimension
 
        slon10_140 = 131 ;      // for salt hyperslab
        slat80_82 = 3 ;         // for salt hyperslab
 
        time = unlimited ;
 
// grid_definition is the dimension name to be used for all grid definitions
 
        grid_definition = 1 ;
 
// edge dimension definitions:

        sdepth_edges = 28 ;
        wdepth_edges = 28 ;
 
variables:
 
  // variable definitions:
 
        float wind(time, slat, slon) ;  // 3-dimensional variable
              wind: parent_grid = "wind_grid" ;
              wind: slab_min_index = 1s, 1s, 1s, 0s ;
              wind: slab_max_index = 160s, 100s, 1s, 0s ;
              wind: long_name = "WIND" ;
              wind: units     = "deg. C" ;
              wind: _FillValue = 1E34f ;
        float salt(time, sdepth, slat80_82, slon10_140) ; // 4-dim. variable
              salt: parent_grid = "salt_grid" ;
              salt: slab_min_index = 10s, 80s, 1s, 0s ;
              salt: slab_max_index = 140s, 82s, 27s, 0s ;
              salt: long_name = "(SALINITY(ppt) - 35) /1000" ;
              salt: units     = "frac. by wt. less .035" ;
              salt: _FillValue = -999.f ;

        float u(time, sdepth, ulat, ulon) ;
              u: long_name    = "ZONAL VELOCITY" ;
              u: units        = "cm/sec" ;
              u: _FillValue = 1E34f ;
        float v(time, sdepth, ulat, ulon) ;
              v: long_name    = "MERIDIONAL VELOCITY" ;
              v: units        = "cm/sec" ;
              v: _FillValue = 1E34f ;
        float w(time, wdepth, slat, slon) ;
              w: long_name    = "VERTICAL VELOCITY" ;



146    CHAPTER 9

              w: units        = "cm/sec" ;
              w: _FillValue = 1E34f ;
 
  // axis definitions:
 
        float slon(slon) ;
              slon: units = "degrees" ;
              slon: point_spacing = "even" ;
        float ulon(ulon) ;
              ulon: units = "degrees" ;
              ulon: point_spacing = "even" ;
        float slat(slat) ;
              slat: units = "degrees" ;
              slat: point_spacing = "even" ;
        float ulat(ulat) ;
              ulat: units = "degrees" ;
              ulat: point_spacing = "even" ;
        float sdepth(sdepth) ;
              sdepth: units = "meters" ;
              sdepth: positive = "down" ;
              sdepth: edges = "sdepth_edges" ;
        float wdepth(wdepth) ;
              wdepth: units = "meters" ;
              wdepth: positive = "down" ;
              wdepth: edges = "wdepth_edges" ;
        float time(time) ;
              time: modulo = " " ;
              time: time_origin = "15-JAN-1981:00:00:00" ;
              time: units = "seconds" ;
 
  // child grid definitions:
 
        float slon10_140(slon10_140) ;
              slon10_140: child_axis = " " ;

              slon10_140: units = "degrees" ;
        float slat80_82(slat80_82) ;
              slat80_82: child_axis = " " ;
              slat80_82: units = "degrees" ;
 
  // edge axis definitions:
 
        float sdepth_edges(sdepth_edges) ;
        float wdepth_edges(wdepth_edges) ;
 
  // parent grid definition:
 
        char wind_grid(grid_definition) ;
             wind_grid: axes = "slon slat normal time" ;
        char salt_grid(grid_definition) ;
             salt_grid: axes = "slon slat sdepth time" ;
 



CONVERTING TO NETCDF FORMAT    147

  // global attributes:
        :title = "NetCDF Title" ;
 
data:

//  //  ignore this block  //
//This next data entry, for time, should be ignored. Time is initi alized here
// only so that Ferret can read test.cdf (the file created by this cdl file)
// with no additional data inserted into it.
time=1000;
// // end of ignored block //
 
slat=
-28.8360729218,- 26.5299491882,-24.2880744934,-22.1501560211,-20.1513576508,
-18.3207626343,- 16.6801033020,-15.2428140640,-14.0134353638,-12.9874248505,
-12.1513509750,- 11.4834814072,-10.9547319412,-10.5299386978,-10.1693935394,
-9.8333206177,-9.4999876022,-9.1666536331,-8.8333196640,-8.4999856949,
-8.1666526794,-7.8333187103,-7.4999847412,-7.1666512489,-6.8333182335,
-6.4999852180,-6.1666517258,-5.8333182335,-5.4999852180,-5.1666517258,
-4.8333187103,-4.4999852180,-4.1666517258,-3.8333187103,-3.4999852180,
-3.1666517258,-2.8333184719,-2.4999852180,-2.1666519642,-1.8333185911,
-1.4999852180,-1.1666518450,-0.8333183527,-0.4999849498,-0.1666515470,
0.1666818559,0.5000152588,0.8333486915,1.1666821241,1.5000154972,
1.8333489895,2.1666824818,2.5000159740,2.8333494663,3.1666829586,
3.5000162125,3.8333497047,4.1666831970,4.5000162125,4.8333497047,
5.1666831970,5.5000162125,5.8333497047,6.1666827202,6.5000162125,
6.8333497047,7.1666827202,7.5000166893,7.8333501816,8.1666841507,
8.5000181198,8.8333511353,9.1666851044,9.5000190735,9.8333530426,
10.1679363251,10.5137376785,10.8892869949,11.3138961792,11.8060989380,
12.3833675385,13.0618314743,13.8560228348,14.7786512375,15.8403968811,
17.0497493744,18.4128704071,19.9334945679,21.6128730774,23.4497566223,
25.4404067993,27.5786647797,29.8560409546,32.2618522644,34.7833900452,
37.4061241150,40.1139259338,42.8893203735,45.7137718201,48.5679702759;
ulat=
-27.6721439362,- 25.3877544403,-23.1883945465,-21.1119174957,-19.1907978058,
-17.4507274628,- 15.9094810486,-14.5761461258,-13.4507236481,-12.5241250992,
-11.7785758972,-11.1883859634,-10.7210769653,-10.3387994766,-9.9999876022,
-9.6666545868,-9.3333206177,-8.9999866486,-8.6666526794,-8.3333196640,
-7.9999856949,-7.6666517258,-7.3333182335,-6.9999847412,-6.6666512489,
-6.3333182335,-5.9999847412,-5.6666517258,-5.3333182335,-4.9999847412,
-4.6666517258,-4.3333182335,-3.9999849796,-3.6666517258,-3.3333184719,
-2.9999852180,-2.6666519642,-2.3333184719,-1.9999853373,-1.6666518450,
-1.3333184719,-0.9999850392,-0.6666516662,-0.3333182633,0.0000151545,
0.3333485723,0.6666819453,1.0000153780,1.3333487511,1.6666821241,
2.0000154972,2.3333489895,2.6666827202,3.0000162125,3.3333497047,
3.6666829586,4.0000162125,4.3333497047,4.6666827202,5.0000162125,
5.3333492279,5.6666827202,6.0000162125,6.3333492279,6.6666827202,
7.0000157356,7.3333497047,7.6666831970,8.0000171661,8.3333511353,
8.6666841507,9.0000181198,9.3333520889,9.6666860580,10.0000190735,
10.3358526230,10.6916217804,11.0869522095,11.5408391953,12.0713586807,
12.6953773499,13.4282865524,14.2837600708,15.2735414505,16.4072513580,
17.6922454834,19.1334934235,20.7334957123,22.4922523499,24.4072608948,



148    CHAPTER 9

26.4735546112,28.6837768555,31.0283031464,33.4953994751,36.0713844299,
38.7408676147,41.4869842529,44.2916526794,47.1358833313,50.0000534058;
slon=
130.5,131.5,132.5,133.5,134.5,135.5,136.5,137.5,138.5,139.5,140.5,141.5,
142.5,143.5,144.5,145.5,146.5,147.5,148.5,149.5,150.5,151.5,152.5,153.5,
154.5,155.5,156.5,157.5,158.5,159.5,160.5,161.5,162.5,163.5,164.5,165.5,
166.5,167.5,168.5,169.5,170.5,171.5,172.5,173.5,174.5,175.5,176.5,177.5,
178.5,179.5,180.5,181.5,182.5,183.5,184.5,185.5,186.5,187.5,188.5,189.5,
190.5,191.5,192.5,193.5,194.5,195.5,196.5,197.5,198.5,199.5,200.5,201.5,
202.5,203.5,204.5,205.5,206.5,207.5,208.5,209.5,210.5,211.5,212.5,213.5,
214.5,215.5,216.5,217.5,218.5,219.5,220.5,221.5,222.5,223.5,224.5,225.5,
226.5,227.5,228.5,229.5,230.5,231.5,232.5,233.5,234.5,235.5,236.5,237.5,
238.5,239.5,240.5,241.5,242.5,243.5,244.5,245.5,246.5,247.5,248.5,249.5,
250.5,251.5,252.5,253.5,254.5,255.5,256.5,257.5,258.5,259.5,260.5,261.5,
262.5,263.5,264.5,265.5,266.5,267.5,268.5,269.5,270.5,271.5,272.5,273.5,
274.5,275.5,276.5,277.5,278.5,279.5,280.5,281.5,282.5,283.5,284.5,285.5,
286.5,287.5,288.5,289.5;
ulon=
131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,140.0,141.0,142.0,
143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0,151.0,152.0,153.0,154.0,
155.0,156.0,157.0,158.0,159.0,160.0,161.0,162.0,163.0,164.0,165.0,166.0,
167.0,168.0,169.0,170.0,171.0,172.0,173.0,174.0,175.0,176.0,177.0,178.0,
179.0,180.0,181.0,182.0,183.0,184.0,185.0,186.0,187.0,188.0,189.0,190.0,
191.0,192.0,193.0,194.0,195.0,196.0,197.0,198.0,199.0,200.0,201.0,202.0,
203.0,204.0,205.0,206.0,207.0,208.0,209.0,210.0,211.0,212.0,213.0,214.0,
215.0,216.0,217.0,218.0,219.0,220.0,221.0,222.0,223.0,224.0,225.0,226.0,
227.0,228.0,229.0,230.0,231.0,232.0,233.0,234.0,235.0,236.0,237.0,238.0,
239.0,240.0,241.0,242.0,243.0,244.0,245.0,246.0,247.0,248.0,249.0,250.0,
251.0,252.0,253.0,254.0,255.0,256.0,257.0,258.0,259.0,260.0,261.0,262.0,
263.0,264.0,265.0,266.0,267.0,268.0,269.0,270.0,271.0,272.0,273.0,274.0,
275.0,276.0,277.0,278.0,279.0,280.0,281.0,282.0,283.0,284.0,285.0,286.0,
287.0,288.0,289.0,290.0;
sdepth=
5.0,15.0,25.0,35 .0,45.0,55.0,65.0,75.0,85.0,95.0,106.25,120.0,136.25,155.0,
177.5,205.0,240.0,288.5,362.5,483.5,680.0 ,979.5,1395.5,1916.0,2524.0,3174.0,
3824.0;
sdepth_edges=
0.0,10.0,20.0,30.0,40.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,
145.0,165.0,190. 0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,
2849.0,3499.0,4149.0;
wdepth=
10.0,20.0,30.0,4 0.0,50.0,60.0,70.0,80.0,90.0,100.0,112.5,127.5,145.0,165.0,
190.0,220.0,260.0,317.0,408.0,559.0,801.0,1158.0,1633.0,2199.0,284 9.0,3499.0,
4149.0;
wdepth_edges=
5.0,15.0,25.0,35 .0,45.0,55.0,65.0,75.0,85.0,94.375,105.625,119.375,135.625,
153.75,176.25,202.5,235.75,280.0,347.5,460.75,651.25,950.0,1372.75,1895.0,
2524.0,3174.0,3986.5,4311.0;
slon10_140=
    139.5, 140.5, 141.5, 142.5, 143.5, 144.5, 145.5, 146.5, 147.5,
    148.5, 149.5, 150.5, 151.5, 152.5, 153.5, 154.5, 155.5, 156.5, 157.5,
    158.5, 159.5, 160.5, 161.5, 162.5, 163.5, 164.5, 165.5, 166.5, 167.5,



CONVERTING TO NETCDF FORMAT    149

    168.5, 169.5, 170.5, 171.5, 172.5, 173.5, 174.5, 175.5, 176.5, 177.5,
    178.5, 179.5, 180.5, 181.5, 182.5, 183.5, 184.5, 185.5, 186.5, 187.5,
    188.5, 189.5, 190.5, 191.5, 192.5, 193.5, 194.5, 195.5, 196.5, 197.5,
    198.5, 199.5, 200.5, 201.5, 202.5, 203.5, 204.5, 205.5, 206.5, 207.5,
    208.5, 209.5, 210.5, 211.5, 212.5, 213.5, 214.5, 215.5, 216.5, 217.5,
    218.5, 219.5, 220.5, 221.5, 222.5, 223.5, 224.5, 225.5, 226.5, 227.5,
    228.5, 229.5, 230.5, 231.5, 232.5, 233.5, 234.5, 235.5, 236.5, 237.5,
    238.5, 239.5, 240.5, 241.5, 242.5, 243.5, 244.5, 245.5, 246.5, 247.5,
    248.5, 249.5, 250.5, 251.5, 252.5, 253.5, 254.5, 255.5, 256.5, 257.5,
    258.5, 259.5, 260.5, 261.5, 262.5, 263.5, 264.5, 265.5, 266.5, 267.5,
    268.5, 269.5 ;
slat80_82=
    11.8060989379883, 12.3833675384522, 13.0618314743042 ;

}

4  CREATING A MULTI-FILE NETCDF DATA SET

Ferret supports collections of NetCDF files that are regarded as a single NetCDF data set. Such
data sets are referred to as “MC” (multi CDF) data sets. A descriptor file, in the style of
TMAP-formatted data sets. These are FORTRAN NAMELIST-formatted files. Slight
variations in syntax exist between systems. The requirements for an MC data set are described
in Chapter 2, Section 2.1 “Multi-file NetCDF data sets”.

A typical MC descriptor file is given below. This file ties into a single data set the 23 files
named mtaa063-nc.001 through mtaa063-nc.024. The time steps are encoded in the descriptor
file through the S_START and S_END values. Ferret performs sanity checking on the data set
by comparing these time coordinates with those found in the data files as the data are read.

***************************************** ***********************************
*        NOAA/PMEL Tropical Modeling and Analysis Program, Seattle, WA.   *
*                      created by MAKE_DESCRIPT rev. 4.01                 *
****************************************************************** ***********
 $FORMAT_RECORD
   D_TYPE               = '  MC',
   D_FORMAT             = '  1A',
   D_SOURCE_CLASS       = 'MODEL OUTPUT',
 $END
 $BACKGROUND_RECORD
   D_EXPNUM             = '0063',
   D_MODNUM             = '  AA',
   D_TITLE              = 'MOM model output forced by Sadler winds',
   D_T0TIME             = '14-JAN-1980 14:00:00',
   D_TIME_UNIT          = 3600.0,
   D_TIME_MODULO        = .FALSE.,
   D_ADD_PARM           = 15*' ',
 $END
 $MESSAGE_RECORD
   D_MESSAGE            = ' ',
   D_ALERT_ON_OPEN      = F,



150    CHAPTER 9

   D_ALERT_ON_OUTPUT    = F,
 $END
*************************************************
 $EXTRA_RECORD
 $END

 $STEPFILE_RECORD
   s_filename           = 'mtaa063-nc.001',
   S_AUX_SET_NUM        = 0,
   S_START              = 17592.0,
   S_END                = 34309.0,
   S_DELTA              = 73.0,
   S_NUM_OF_FILES       = 23,
   S_REGVARFLAG         = ' ',
 $END
 **************************************************
 $STEPFILE_RECORD
   s_filename           = '**END OF STEPFILES**'
 $END
 **************************************************



COMMANDS REFERENCE    151

Part II: COMMANDS REFERENCE

1  ALIAS

An alias for DEFINE ALIAS.

2  CANCEL

Cancels a program state or definition—generally paired with a SET or DEFINE command.

See commands SET and DEFINE for further information.

2.1  CANCEL ALIAS

Cancels a user-defined command alias.
   

yes? CANCEL ALIAS ALIAS_NAME

The command UNALIAS is an alias for CANCEL ALIAS.

2.2  CANCEL AXIS
 /MODULO

Cancels the modulo nature of a user-defined axis (only valid with /MODULO qualifier).

yes? CANCEL AXIS/MODULO my_x_axis

Command qualifiers for CANCEL AXIS:

CANCEL AXIS/MODULO

2.3  CANCEL DATA_SET
 /ALL /NOERROR

Removes the specified data set from the list of available sets.

yes? CANCEL DATA_SET dset1, dset2, ..., dsetn

where each dset may be the name or number of a data set; or
yes? CANCEL DATA/ALL

(See also SET DATA_SET and SHOW DATA SET.)



152    COMMANDS REFERENCE

Command qualifiers for CANCEL  DATA_SET:

CANCEL DATA/ALL
Eliminates all data sets from the list of accessible data sets.

CANCEL DATA/NOERROR
Suppresses the error message otherwise generated when a data set that was never set is
canceled. Useful in GO scripts for closing data sets that may have been opened in previous
usage of the script. 

2.4  CANCEL EXPRESSION

Un-specifies the current context expression. Ferret’s “action” commands can be issued without
an argument (e.g.,  yes? PLOT ), in which case Ferret uses the current context expression. This
expression is either the argument of the most recent action command, or an expression set
explicitly with SET EXPRESSION.

yes? CANCEL EXPRESSION

The qualifier /ALL can be used with this command, but it exists for compatibility purposes only
and has no effect.

2.5  CANCEL LIST
 /ALL /APPEND /FILE /FORMAT /HEADING /PRECISION

Toggles the effects of the SET LIST command. See command SET LIST.

yes? CANCEL LIST[/qualifiers]

Command qualifiers for:  CANCEL LIST

CANCEL LIST/ALL
Restores all aspects of the LIST command to their default behavior.

CANCEL LIST/APPEND
Resets the listed output to NOT append to existing file.

CANCEL LIST/FILE
Resets the listed output to automatic file naming.

CANCEL LIST/FORMAT
Resets the listed output to its default formatting.

CANCEL LIST/HEAD
Instructs listed output to omit the descriptive data header.



COMMANDS REFERENCE    153

CANCEL LIST/PRECISION
Resets the precision of listed data to 4 significant digits.

2.6  CANCEL MEMORY
 /ALL /PERMANENT /TEMPORARY

Clears data currently cached in memory.

yes? CANCEL MEMORY[/qualifier]

Use this command to save memory space—by clearing data as soon as it is no longer needed
virtual memory requirements can be reduced. This is especially useful for efficient batch
processing. Default is CANCEL MEMORY/TEMPORARY.

Example:

To produce an animation using minimal virtual memory try:
yes? REPEAT/T=lo:hi:delta GO min_mem_movie

Where the file min_mem_movie.jnl contains
CONTOUR/FRAME  temp[Z=0] ! contour plot
CANCEL MEMORY/ALL ! clear memory for next time step

Command qualifiers for CANCEL MEMORY:

CANCEL MEMORY/ALL
Clears all variables stored in memory.

CANCEL MEMORY/PERMANENT
Clears all “permanent” variables stored in memory (i.e., variables loaded into memory with
LOAD/PERMANENT).

CANCEL MEMORY/TEMPORARY  (default)
Clears all non-permanent variables stored in memory.

2.7  CANCEL MODE

Sets the state of a mode to “canceled.”

yes? CANCEL MODE mode_name

(See command SET MODE for descriptions of modes.)



154    COMMANDS REFERENCE

2.8  CANCEL MOVIE

This command is unnecessary in Ferret version 3.1 and later; it is provided for compatibility
with older versions of Ferret. It restores the default movie file name (ferret.mgm) but is not
needed to conclude capturing graphics to a movie file.

yes? CANCEL MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes only
and has no effect.

2.9  CANCEL REGION
/I/J/K/L /X/Y/Z/T /ALL

Cancels part or all of the current or named region.

yes? CANCEL REGION[/qualifier] [region_name]

Examples:
yes? CANCEL REGION !clear the current region
yes? CANCEL REGION/T !eliminate T from the current context
yes? CANCEL REGION reg1 !clear the region named "reg1"

Command qualifiers for CANCEL REGION:

CANCEL REGION/I /J /K /L /X /Y /Z /T  
Eliminates I, J, K, L, X, Y, Z, or T axis information from current context or named region.

CANCEL REGION/ALL
Eliminates ALL stored region information (rarely used).

2.10  CANCEL VARIABLE
/ALL

Deletes a user-defined variable definition.

yes? CANCEL VARIABLE[/qualifier]  [var_name]

Command qualifiers for CANCEL VARIABLE:

CANCEL VARIABLE/ALL
Deletes all user-defined variable definitions.



COMMANDS REFERENCE    155

2.11  CANCEL VIEWPORT

Cancels a defined viewport or cancels use of viewports.

yes? CANCEL VIEWPORT view_name !un-define view_name
yes? CANCEL VIEWPORT !return to full window output

2.12  CANCEL WINDOW
/ALL

Removes graphics window(s) from the screen.

yes? CANCEL WINDOW  n   !or

yes? CANCEL WINDOW/ALL

Command qualifiers for CANCEL WINDOW:

CANCEL WINDOW/ALL
Removes all graphics windows.

3  CONTOUR
/I/J/K/L /X/Y/Z/T /D /FILL /FRAME /KEY /LEVELS /LINE /NOKEY
/NOLABEL /OVERLAY /PALETTE /PEN /SET_UP /TITLE /TRANSPOSE
/XLIMITS /YLIMITS

Produces a contour plot.

yes? CONTOUR[/qualifiers]   [expression]

Example:

yes? CONTOUR var1 !produce a contour plot of the variable var1

Parameters
Expressions may be any valid expression. See Chapter 3, section “Expressions,” for a definition
of valid expressions. The expression will be inferred from the current context if omitted from
the command line.

Command qualifiers for CONTOUR:

CONTOUR/I=/J=/K=/L=/X=/Y=/Z=/T=  
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.



156    COMMANDS REFERENCE

CONTOUR/D= 
Specifies the default data set to use when evaluating the expression being contoured.

CONTOUR/FILL    (alias FILL)
Creates a color filled contour image. 

CONTOUR/FRAME
Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE.

CONTOUR/KEY
Displays a color key for the palette used in a color-filled contour plot. Only valid in conjunction
with /FILL (default with CONTOUR/FILL or alias FILL).

CONTOUR/LEVELS
Specifies the contour levels or how the levels will be determined. If the /LEVELS qualifier is
omitted Ferret automatically selects reasonable contour levels.

See Chapter 6, section “Contouring” for examples and more documentation on /LEVELS and
color_thickness indices, and also the demonstration “custom_contour_demo.jnl”.

CONTOUR/LINE
Overlays contour lines on a color-filled plot. Valid only with /FILL (or as a qualifier to alias
FILL). When /LINE is specified the color key, by default, is omitted. Use FILL/LINE/KEY to
obtain both contour lines and a color key.

CONTOUR/NOKEY
Turns off display of a color key for the palette used in a color-filled contour plot. Only valid
in conjunction with /FILL (or with alias FILL).

CONTOUR/NOLABELS
Suppresses all plot labels except axis labels.

CONTOUR/OVERLAY
Causes the indicated expression to be overlaid on the existing plot.

Note (CONTOUR/OVERLAY with time axes):
A restriction in PPLUS requires that if time is an axis of the contour plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid contour fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis.



COMMANDS REFERENCE    157

CONTOUR/PALETTE=
Specifies a color palette (otherwise, the current default palette is used). Valid only with
CONTOUR/FILL (or as a qualifier to the alias FILL). The file suffix *.spk is not necessary
when specifying a palette. Try the Unix command % Fpalette '*'  to see available palettes.
See command PALETTE for more information.

Example:

yes? CONTOUR/FILL/PALETTE=land_sea  world_relief

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE command for further discussion.

CONTOUR/PEN=
Sets line style for contour lines (same arguments as PLOT/LINE=). Argument can be an integer
between 1 and 18; run GO line_samples  to see the styles for color devices.

Example:

yes? CONTOUR/PEN=2  sst

CONTOUR/SET_UP
Performs all the internal preparations required by program Ferret for contouring but does not
actually render output. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL CONTOUR command. This permits plot customizations that
are not possible with Ferret command qualifiers. See Chapter 6, section “Contouring.”

CONTOUR/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. 

CONTOUR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X and T axes of the
data are drawn horizontally on the plot and the Y and Z axes of the data are drawn vertically.
For Y-Z plots the Z data axis is vertical by default.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /XLIMITS for further details. Use /TRANSPOSE manually
to reverse this effect.



158    COMMANDS REFERENCE

CONTOUR/XLIMITS=
Specifies axis range and tic interval for the X axis. Without this qualifier, Ferret selects
reasonable values. 

yes? CONTOUR/XLIMITS=lo_val:hi_val[:increment]  [expression]

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. This can lead to confusion, especially on plots in the YT or ZT plane.  Plots in these
planes are automatically transposed to place the Y or Z axis, respectively, on the vertical axis
of the plot. Plots may also be transposed manually with the /TRANSPOSE qualifier. On
transposed plots /XLIMITS will refer to the vertical axis of the plot.

CONTOUR/YLIMITS=
Specifies the axis range and tic interval for the Y axis. See /XLIMITS.

4  DEFINE

Defines a new alias, region, grid, axis, variable or viewport.

4.1  DEFINE ALIAS

Defines an alias for a command.  “ALIAS” is an alias for DEFINE ALIAS.

 yes? DEFINE ALIAS NAME COMMAND

Example:

yes? DEFINE ALIAS SDF SHOW DATA/FULL

4.2  DEFINE AXIS
/X/Y/Z/T /DEPTH /FILE /FROMDATA /MODULO
/NAME /NPOINTS /T0 /UNIT 

Defines an axis (axis name up to 16 characters).

yes? DEFINE AXIS[/qualifiers]  axis_name_or_expr



COMMANDS REFERENCE    159

Example:

yes? DEFINE AXIS/X=140E:140W:.2   AX140

Command qualifiers for DEFINE AXIS:
DEFINE AXIS/X=/Y=/Z=/T=   
Specifies the limits and point spacing of an axis. 

yes? DEFINE AXIS/X=lo:hi:delta   axis_name

The limits may be in longitude, latitude, or date format (for X, Y, or T axis, respectively)  or
may be simple numbers. No units are assumed unless units are given explicitly with the /UNITS
qualifier. 

Use /UNITS=degrees to obtain latitude or longitude axes. The X or Y qualifier determines
which orientation “degrees” refers to.

For T axis, the limits may be dates (dd-mmm-yyyy:hh:mm:ss) or may be time steps. The delta
increment is regarded as hours unless the /UNITS qualifier specifies otherwise.

If the time limits are given as dates then this axis produces date-formatted output (unless
CANCEL MODE CALENDAR is issued). If the time limits are given as time steps then all
instances of this axis are labeled with time step values in the units specified with the /UNITS
qualifier.

Examples (evenly-spaced axes):

yes? DEFINE AXIS/X=140E:140W:.2 ax140

yes? DEFINE AXIS/Y=15S:25N:.5 axynew

yes? DEFINE AXIS/Z=0:5000:20/UNITS=CM/DEPTH axzcm

yes? DEFINE AXIS/T="7-NOV-1953":"23-AUG-1988:11:00":24  axtlife

yes? DEFINE AXIS/T=25:125:5/UNITS=minutes   axt5min

DEFINE AXIS/DEPTH  
Specifies the Z axis to be a depth, positive downward, axis. A depth axis is indicated by a “(-)”
following its title in a SHOW GRID or SHOW AXIS command. Depth axes are notated by
“UD” (up-down) in the grid definition file, while normal vertical axes (such as an elevation axis
in meteorology) are notated by “DU” (down-up).

Example:

yes? DEFINE AXIS/Z=0:5000:20/DEPTH/UNITS=CM AXZDCM



160    COMMANDS REFERENCE

DEFINE AXIS/FILE=
Reads a gridfile for grid and axis definitions. The gridfile specified should be in the standard
TMAP gridfile format. There are several documents in $FER_DIR/doc regarding gridfiles and
TMAP format (e.g., “about_grid_files.txt”).

yes? DEFINE AXIS/FILE=grid_file.grd

DEFINE AXIS/FROM_DATA
Used only in conjunction with /NAME to define an axis from any expression that Ferret can
evaluate.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name   expr

(This is a mechanism to convert dependent variables into independent axis data.)  

Example (unevenly-spaced axis):

yes? DEFINE AXIS/FROM_DATA/X/NAME=my_xaxis pos[D=2]^0.5

defines each coordinate of the axis “my_xaxis” as the square root of variable “pos” from data
set 2.

DEFINE AXIS/MODULO
Specifies that the axis being defined be treated as modulo; that is, the first point will wrap
around and follow the last point (e.g., a longitude axis).

DEFINE AXIS/NAME=
Used only in conjunction with /FROM_DATA to specify the name of the axis to be defined.

yes? DEFINE AXIS/FROM_DATA/NAME=axis_name   expr

DEFINE AXIS/NPOINTS=
Specifies the number of coordinate points on the axis being defined.

yes? DEFINE AXIS/Z=lo:hi/NPOINTS=n   ax_name

This qualifier can be used instead of specifying Z=lo:hi:delta.

DEFINE AXIS/T0=
Specifies the date and time associated with the time step value 0.0

Example:

DEFINE AXIS/T="1-NOV-1980":"15-AUG-1988":72/T0="1-JAN-1800"  TNEW



COMMANDS REFERENCE    161

Note: The /T0 qualifier is optional; the underlying time step values are transparent to Ferret
users for most purposes. The default value is 15-JAN-1901.

DEFINE AXIS/UNITS=
Specifies the units of the axis being defined.

Example:

yes? DEFINE AXIS/Z=0:2000:100/UNITS=CM   ZCM

Any string (up to 10 characters) is acceptable as a units string, but only the following units are
recognized and used when computing axis transformations:

cm  ( or centimeter) mile min
km ( or kilometer) mm (or millimeter) hour
m (or meter) mb (or millibar) day
deg (or lat or lon) level mon
ft (or feet or foot) layer yr (or year)
in sec

4.3  DEFINE GRID
/X/Y/Z/T /FILE /LIKE

Defines a grid (name may be up to 16 characters).

yes? DEFINE GRID[/qualifiers]   grid_name

Example:

yes? DEFINE GRID/LIKE=temp/T=my_t_axis   my_grid

Command qualifiers for DEFINE GRID:

DEFINE GRID/X=/Y=/Z=/T=
Specifies what particular axis is to be the X, Y, Z, or T axis for this grid.

yes? DEFINE GRID/X=axname  grid_name

The name axname may be the name of an axis, the name of a grid that uses the axis desired, or
the name of a variable for which the defining grid uses the axis desired.

For example,

yes? DEFINE GRID/X=U   gx

will create a grid named gx which is one-dimensional—normal to Y, Z, and T.



162    COMMANDS REFERENCE

Note: Many axes possess an orientation implicit in their units, especially latitude, longitude, and
time axes. The effects of using an axis in an inappropriate orientation, such as /X=time_axis,
are unpredictable.

DEFINE GRID/FILE=
Reads a gridfile for GRID and AXIS definitions. The gridfile specified should be in the
standard TMAP gridfile format. There are several documents in $FER_DIR/doc regarding
gridfiles and TMAP format (e.g., about_grid_files.txt).

Example:

yes? DEFINE GRID/FILE=new_grids.grd  

DEFINE GRID/LIKE=
Specifies a particular grid (by name or by reference to a variable defined on that grid) to use
as a template to create a new grid. 

yes? DEFINE GRID/LIKE=grid_or_variable_name   grid_name

All axes of the grid being created will be identical to the axes of the “LIKE=” grid except those
explicitly changed with the /X, /Y, /Z, or /T qualifiers.

Example:

yes? DEFINE GRID/LIKE=temp[D=2]/Z=ZAX  gnew !temp from data set 2

Examples:  DEFINE GRID

1) yes? DEFINE AXIS/T="1-JAN-1980":"31-DEC-1983":24 axday
yes? DEFINE GRID/LIKE=temp/T=axday gday

Define grid gday to be like the defining grid for temp but with a 4-year, daily-interval time
axis.

2) yes? DEFINE GRID/LIKE=temp[D=ba022]/T=sst[D=nmc] gnmc3d

Define grid gnmc3d like temp from data set ba022 but with the same time axis as sst from
data set nmc.

3) yes? DEFINE AXIS/X=140E:140W:.2 xnew
yes? DEFINE AXIS/Y=5S:5N:.2 ynew
yes? DEFINE AXIS/T="15-FEB-1982":"15-FEB-1984":48 tnew
yes? DEFINE GRID/X=xnew/Y=ynew/T=tnew gnew

Define grid gnew from new axes. The grid, gnew, will be normal (perpendicular) to Z.



COMMANDS REFERENCE    163

4.4  DEFINE REGION
/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT /DEFAULT

 
Defines or redefines a named region_name (first 4 characters are recognized).

yes? DEFINE REGION[/qualifiers] region_name

If the qualifier /DEFAULT is not given only those axes explicitly named will be stored. If the
qualifier /DEFAULT is given all axes will be stored.

Command qualifiers for DEFINE REGION:

DEFINE REGION/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies region limits ( =lo:hi  or  =val).

DEFINE REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Specifies a change in region relative to the current settings (=lo:hi  or  =val). See examples
below.

DEFINE REGION/DEFAULT
Saves all axes and transformations, not just those explicitly given. Commonly, a GO script
begins with “DEFINE REGION/DEFAULT save” and ends with “SET REGION save”.

Examples:  DEFINE REGION

1) yes? DEFINE REGION/DEFAULT  save

Stores the current default region under the name “save”. The region may be restored at a
later time by the command   yes? SET REGION save.

2) yes? DEFINE REGION/X   xonly

Stores the current default X axis limits, only, as region xonly.

3) yes? DEFINE REGION/DX=-5   xonly

Stores the current default X axis limits minus 5 as region xonly.

4) yes? DEFINE REGION/Y=20S:20N/Z   yanz

Stores the given limits from the Y axis and the default Z axis limits.

5) yes? DEFINE REGION/DEFAULT/L=5   l5

Stores the current default region with the modification that L, the time step, is stored as 5.

6) yes? DEFINE REGION/DL=-1:+1  lp2

Stores an L region beginning 1 time step earlier and ending 1 time step later than the current
default region as region lp2.



164    COMMANDS REFERENCE

4.5  DEFINE VARIABLE
/D/QUIET /TITLE /UNITS

  
Allows the user to define a variable from a valid algebraic expression. Note: LET is an alias for
DEFINE VARIABLE.

yes? DEFINE VARIABLE[/qualifiers]  name=expression

Example:

yes? LET SPEED = U^2 + V^2

Parameters
The expression may be any valid expression. See Chapter 3, section “Expressions” for a
definition of valid expressions.

The name specified with DEFINE VARIABLE can be 1 to 24 characters in length—letters,
digits, $ and _, beginning with a letter. Pseudo-variable, operator, and function names are
reserved and cannot be used (I, J, EQ, SIN,...). See Chapter 3 for recognized pseudo-variables,
operators, and functions.

If the name defined is the same as a variable name in a data set, the user-defined variable is
used instead of the file variable. (Look for LET/D=d_set to control this behavior in future
Ferret versions.)

To enter expressions in Reverse Polish ordering see SET MODE POLISH.

Examples:

1) yes? DEFINE VARIABLE sum = a+b

or equivalently
yes? LET sum = a+b

2) yes? DEFINE VARIABLE/TITLE="velocity"/UNIT="m/sec" pos[T=@DDC]*0.01

Defines velocity in m/sec from position, pos, in cm.

Command qualifiers for DEFINE VARIABLE:

DEFINE VARIABLE/D=dataset
Restricts the scope of the variable name to the named data set. See detailed discussion in the
section entitled “Defining New Variables.”

DEFINE VARIABLE/QUIET
Suppresses message that, by default, tells you when you are redefining an existing variable.
This qualifier is useful in command files.



COMMANDS REFERENCE    165

DEFINE VARIABLE/TITLE=
Specifies a title (in quotation marks) for the user-defined variable. This title will be used to
label plots and listings. If no title is specified the text of the expression will be used as the title.
(See also SET VARIABLE/TITLE.)

DEFINE VARIABLE/UNITS=
Specifies the units (in quotation marks) of the variable being defined. (See command SET
VARIABLE/UNITS.)

4.6  DEFINE VIEWPORT
/CLIP /ORIGIN /SIZE /TEXT /XLIMITS /YLIMITS

Defines a new viewport (a sub-rectangle of the graphics window).

yes? DEFINE VIEWPORT[/qualifiers]   view_name

Issuing the command SET VIEWPORT is best thought of as entering “viewport mode.”  While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots are drawn in
a single viewport without the use of /OVERLAY the current plot will erase and replace the
previous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of “viewport mode” is canceled.

Example:

yes? DEFINE VIEWPORT/XLIMITS=0,.5/YLIMITS=0,.5   LL

Defines a viewport that will place graphical output into the lower left quarter of the screen, and
names the viewport “LL”.

Command qualifiers for DEFINE VIEWPORT.

DEFINE VIEWPORT/CLIP=  
This qualifier is obsolete; see XLIMITS= and /YLIMITS=. Specifies the location of the upper
right corner of the viewport.   

DEFINE VIEWPORT/ORIGIN=
This qualifier is obsolete; see /XLIMITS= and /YLIMITS=. Specifies the location of the lower
left corner of the viewport.   

DEFINE VIEWPORT/SIZE=  
This qualifier is obsolete; see /XLIMITS and /YLIMITS. Specifies the scaling factor to use
relative to the size of the full window.  



166    COMMANDS REFERENCE

DEFINE VIEWPORT/TEXT=
Controls shrinkage (or expansion) of text. 

yes? DEFINE VIEWPORT/TEXT=n  view_name

In some cases text appearance may become unacceptable due to viewport size and aspect
specifications. A value of 1 produces text of the same size as in the full window; 0 < n < 1
shrinks the text; n > 1 enlarges text. Sensible values go up to about 2. When the qualifier
/TEXT is omitted, Ferret computes a text size that is appropriate to the size of the viewport.

Note that /TEXT modifies the prominence of the text through manipulation of axis lengths
rather than through direct manipulation of the many text size specifications. A low value of text
prominence produces axes that are “long” (as seen with SHOW SYMBOLS or PPL LIST
XAXIS), making the (fixed size) text appear less prominent. 

DEFINE VIEWPORT/XLIMITS=/YLIMITS=
Specifies the portion of the full window to be used. 

yes? DEFINE VIEWPORT/XLIMITS=x1,x2/YLIMITS=y1,y2   view_name

The values of the limits must be in the range [0,1]; they refer to the portion of the window (of
height and length 1) which defines the viewport. Together, /XLIMITS and /YLIMITS replace
the CLIP, ORIGIN and SIZE qualifiers in older Ferret versions. 

5  ELIF

The ELIF command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description
under the IF command in this Commands Reference section.

6  ELSE

The ELSE command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description
under the IF command in this Commands Reference section.

7  ENDIF

The ENDIF command is a part of Ferret’s conditional command execution capability:
IF-THEN-ELIF-ELSE-ENDIF. It is valid only inside of an IF block. See further description
under the IF command in this Commands Reference section.



COMMANDS REFERENCE    167

8  EXIT
/COMMAND_FILE

When issued interactively this command terminates program Ferret.

When executed within a command file this command terminates the execution of the command
file and returns control to the level in Ferret that executed the file (the user or another command
file). 

Command qualifiers for EXIT:

EXIT/COMMAND_FILE
When executed from within a command file EXIT/COMMAND_FILE forces an immediate exit
from Ferret rather than returning control to the user or another command file.

9  FILE

The FILE command is an alias for SET DATA/EZ. All qualifiers and restrictions are identical
to SET DATA/EZ

Example:

yes? FILE/VARIABLES="u,v" velocities.dat

is equivalent to
yes? SET DATA/EZ/VARIABLES="u,v" velocities.dat

10  FILL

Alias for CONTOUR/FILL (color-filled contour plot). All qualifiers and restrictions are
identical to CONTOUR/FILL.

Example:

yes? FILL/PAL=land_sea  etopo60

is equivalent to
yes? CONTOUR/FILL/PAL=land_sea  etopo60



168    COMMANDS REFERENCE

11  FRAME
/FORMAT/FILE

Saves the current graphics display image as a frame in the movie file initialized with the
command SET MOVIE. FRAME is also a qualifier for the “action” commands PLOT,
CONTOUR, SHADE, VECTOR and WIRE.

yes? CONTOUR my_var
yes? FRAME

FRAME/FORMAT=format  controls the format of the file produced.
FRAME/FORMAT=HDF  appends an HDF raster 8 drawn to the specified or implied input
file. FRAME/FORMAT=GIF  creates a new GIF file, any existing GIF file with the specified
or implied name using relaive version number or less. The default format is HDF.
FRAME/FILE=filename  specifies the name of the output file. If /FORMAT is not specified
the output format is inferred from filename extensions of .hdf, .HDF, .gif, or .GIF.

12 GO
/HELP

Executes a list of commands stored in a file. 

yes? GO file_name

If no filename extension is specified a default of .jnl will be assumed. If the full path  is
specified then the filename must be enclosed in double quotation marks.

The GO command can pass arguments to the script (tool) it executes. See Chapter 1, section
“Writing GO Tools” for more information. Arguments to the GO command may be separated
by blanks or commas. To specify multiple words as a single argument, enclose them in
quotation marks. To specify an argument that is deliberately omitted, use " " or two consecutive
commas.

The response of Ferret to errors encountered during execution of the command file is
determined by mode IGNORE_ERRORS. (See command SET MODE.)

The echoing of command file lines is controlled by mode VERIFY.

The GO command understands a special syntax called “relative version numbers.” If a filename
is specified for the GO command which has a version value of zero or less its value is
interpreted as relative to the current highest version number. See Chapter 7, section “Relative
version numbers” for a discussion of relative version numbers of files.



COMMANDS REFERENCE    169

Note:  The command SET MODE IGNORE_ERRORS is useful when rerunning past sessions
which may have errors. 

/HELP
The command  GO/HELP filename opens the named script with the Unix “more” command
and displays the first 20 lines of the named file. Use this command to quickly see the
documentation in a GO script.

13  HELP

On Unix systems interactive Ferret help is available from the command line with the commands
Fapropos, Fhelp, and Ftoc. If multiple windows are not available on your system the ^Z key
can be used to suspend the current Ferret session and access the help; the Unix command “fg”
will then restore the suspended session.

See Chapter 1, section “Unix on-line help” for more information. 

14  IF

Ferret provides an IF-THEN-ELSE syntax to allow conditional execution of commands. It may
be used in two styles—single line and multi-line. In both the single and multi-line styles the
true or false of the IF condition is determined by case-insensitive recognition of one of these
options: 

TRUE condition:
• a valid, non-zero numerical value
• TRUE
• T
• YES
• Y

FALSE condition:
• a zero value
• an invalid embedded expression (see next paragraph)
• FALSE
• F
• NO
• N
• BAD
• MISSING



170    COMMANDS REFERENCE

Examples:

• IF `i GT 5` THEN SAY “I is too big” ENDIF

writes message if the value of I is greater than 5
• IF ($yes_or_no) THEN GO yes_script ELSE GO no_script

executes yes_script or no_script according to the value of the symbol yes_or_no
• IF ($dset%|coads>TRUE|%) THEN GO my_plot

  executes the script my_plot.jnl only if the symbol dset contains “coads”
• IF `i LT 3` THEN

GO option_1
ELIF `i LT 6` THEN

GO option_2
ELSE

GO option_3
ENDIF

uses the multi-line IF syntax to select among GO scripts.

Embedded (grave accent) expressions can be used in conjunction with the IF syntax. For
example, `3 GT 2` (Is three greater than 2?) evaluates to “1" (TRUE) and `3 LT 2` (Is three less
than 2?) evaluates to “0” (FALSE). If the result of a grave accent expression is invalid, for
example division by zero as in `1/0`, the string “bad” is, by default, generated. Thus invalid
expressions are regarded as FALSE. 

Symbol substitution permits IF decisions to be based on text-based conditions. Suppose, for
example, the symbol ($DATASET) contains either coads or levitus. Then an IF condition could
test for coads using ($DATASET%|coads>TRUE|%).

The single line style allows IF-THEN-ELSE logic to be applied on a single line. For example,
to make a plot only when the surface (Z=0) temperature exceeds 22 degrees we might use

IF `TEMP[X=160W,Y=2N,Z=0] GT 22` THEN PLOT TEMP[X=160W,Y=2N] 

The single line syntax may be any of the following:
IF condition THEN clause_1
IF condition THEN clause_1 ENDIF
IF condition THEN clause_1 ELSE clause_2
IF condition THEN clause_1 ELSE clause_2 ENDIF

Note that both ELSE and ENDIF are optional in the single line syntax. Groups of commands
enclosed in parentheses and separated by semicolons can be used as clause_1 or as clause_2.
There is no ELIF (pronounced “else if”) statement in the single line syntax. However, IF
conditions can be nested as in 

IF `i1 GT 5` THEN (IF `j1 LT 4` THEN go option_1 ELSE go option_2) 



COMMANDS REFERENCE    171

The multi-line style expands the IF capabilities by adding the ELIF statement. Multi-line IF
statement follows the pattern

IF condition_1 THEN
clause_1_line_1
clause_1_line_2
.
.
.

ELIF condition_2 THEN
clause_2_line_1
.
.
.

ELIF condition_3 THEN
.
.
.

ELSE
.
.
.

ENDIF

Note that THEN is optional at the end of IF and ELIF statements but the ENDIF statement is
required to close the entire IF block. Single line IF statements may be included inside of
multi-line IF blocks.

15  LABEL
/NOUSER

Places a label on the current plot; alias for PPL %LABEL. %LABEL is one of PPLUS’s
primitive plot commands. It places a label on the plot immediately after being issued (rather
than deferring placement). PPLUS does not assign numbers to labels created with LABEL, so
they cannot be manipulated as movable labels.

yes? LABEL xpos, ypos, center, angle, size   text

xpos, ypos position in user units (world coordinates)
center -1  left justification

 0  centered
 1  right justification

angle angle in degrees, 0 degrees at 3 o’clock
size size of text in inches

See Chapter 6, section “Labels” for examples.
 



172    COMMANDS REFERENCE

Command qualifiers for LABEL:

LABEL /NOUSER
Locates labels in inches instead of user units (xpos and ypos are specified in inches rather than
in world coordinates). 

16  LET

The LET command is an alias for DEFINE VARIABLE. All qualifiers and restrictions are
identical to DEFINE VARIABLE.

Example:

yes? LET A = B

is equivalent to
yes? DEFINE VARIABLE A = B

17  LIST
/I/J/K/L /ILIMITS /JLIMITS /KLIMITS /LLIMITS /XLIMITS /YLIMITS
/ZLIMITS /TLIMITS /X/Y/Z/T /D /APPEND /FILE /FORMAT /HEADING /NOHEAD
/ORDER /RIGID /SINGLE

Produces a listing of the indicated data.

LIST[/qualifiers]   [expression_1 , expression_2 , ...]

Example: 

yes? LIST/Z=10 u , v , u^2 + v^2

Lists the 3 quantities specified using the current default data set and region (at depth 10).

Parameters
Expressions may be any valid expression. See Chapter 3, section “Expressions” for a definition
of valid expressions. If multiple variables or expressions are specified they may be listed
together in columns or in sequence depending on the /SINGLY qualifier. The expression(s) will
be inferred from the current context if omitted from the command line.

If multiple expressions are given on the command line and /SINGLY is not specified, then the
expressions must be conformable. See Chapter 3, section “Multi-dimensional expressions” for
a definition of conformable expressions. Degenerate or single point axis limits will be promoted
up (values repeated) as needed.



COMMANDS REFERENCE    173

Example:

yes? LIST/I=1:3/J=1:2  i+j, i

Command qualifiers for LIST:
LIST/I= /J= /K= /L=/X= /Y= /Z= /T=  
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression(s) being listed.

LIST/ILIMITS=/JLIMITS=/KLIMITS=/LLIMITS=
Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression’s limits it is possible to
/APPEND data later. (See Chapter 8, section “Simple Conversions Using Ferret,” ex. 4).

LIST/XLIMITS=/YLIMITS=/ZLIMITS=/TLIMITS=
Specifies the size of the desired NetCDF output file independently from the actual data being
saved. By specifying axis limits in excess of the saved expression’s limits it is possible to
/APPEND data later. (See Chapter 8, section “Simple Conversions Using Ferret,” ex. 4).

LIST/D=
Specifies the default data set to be used when evaluating the expression(s) being listed. 

LIST/APPEND
Use this qualifier together with the /FILE qualifier to indicate that the listed data should be
appended to a pre-existing file. If no file exists by the name indicated a new file is created. This
qualifier is not applicable to /FORMAT=GT. When used with /FORMAT=CDF it permits any
data in the file to be overwritten, new variables to be added to the file, and appending of new
indices along the T axis of the variables in the file. This qualifier overrides the command
CANCEL LIST/APPEND.

LIST/FILE  [=file_name]
Names a file to receive the listed data. If /FILE is specified with no name then the default name
is used from the SET LIST/FILE command.

Example:

yes? LIST/FILE=my_file.dat sst[D=coads_climatology]

See command SET LIST for further information on automatic filename generation.

LIST/FORMAT=
Specifies an output format ( =format_choice) for the data to be listed. 

yes? SET LIST/FORMAT=format_choice

or
yes? SET LIST/FORMAT       (use format set by SET LIST/FORMAT)



174    COMMANDS REFERENCE

Format choices:
FORTRAN format produces ASCII output
“UNFORMATTED” produces unformatted (binary) output using FORTRAN

record structure
“CDF” produces NetCDF format output
“GT” produces TMAP GT format
“STREAM” produces unstructured binary floating point (C-style)
“tab” produces tab-delimited output
“comma” produces comma-delimited output

This command has the same function as SET LIST/FORMAT except that it does not affect
future LIST commands. See command SET LIST/FORMAT for detailed documentation.

Notes for LIST/FORMAT:

1) All output values, regardless of the /FORMAT designation, will be of type single precision
floating point. For FORTRAN output formats this means all numerical field specifiers must
be “F”, “E”, or “G”.

2) For FORTRAN-formatted and UNFORMATTED (binary) output, the contents of a single
output “record” are determined by the /ORDER qualifier. For example, each record will be
a line of Y values for LIST/ORDER=YX. If /ORDER is omitted, the records will be the first
output axis of greater than unity length taken in the order X, Y, Z, then T. FORTRAN-
formatted output records may be further split by the usual rules of FORTRAN output
formatting.

3) FORTRAN formats must be enclosed in parentheses. If blanks are included in the format
it must be enclosed in quotation marks. Output strings are permitted in the format.

Example:

yes? LIST/FORMAT=("The temperature is:", F6.3)  sst[X=180, Y=0]

4) The default listing style includes labels for the rows and columns of the output. When a
FORTRAN format is specified, these labels are omitted.

5) On Unix systems the /FORMAT=UNFORMATTED specifier produces FORTRAN-style
variable-length records. On most implementations this means that a 4-byte field containing
the record length begins and ends each record of data.

6) The command alias SAVE is provided for the commonly used LIST/FORMAT=CDF.
NetCDF outputs are self-documenting, including grid definitions. The output files can be
used as input with the command USE—alias for SET DATA/FORMAT=CDF. See
command SAVE for further notes about NetCDF files.



COMMANDS REFERENCE    175

LIST/HEAD
For ASCII data listings this command determines whether to precede the listing with a heading
describing data set, variable and region. This qualifier  overrides the CANCEL LIST/HEAD
command.

LIST/HEADING[=ENHANCED]
For ASCII data listings this qualifier determines whether to precede the listing with a heading
that describes the data set, variable, and region. This qualifier overrides the CANCEL
LIST/HEAD command. When the argument /HEADING=ENHANCED is used a
self-documenting heading is provided that includes the axis coordinates.

For NetCDF output files (alias SAVE) the /HEADING=ENHANCED option causes the
NetCDF file structure to include extra coordinate information that describes how the particular
data subset being written fits within the broader coordinate system of the grid from which it is
extracted. When a NetCDF file with an enhanced heading is accessed by Ferret (using SET
DATA or USE) the index values will appear to be consistent with the parent data set.

LIST/NOHEAD
Does not precede listing with a heading describing data set, variable and region. This qualifier
overrides the SET LIST/HEAD command.

LIST/ORDER=
Specifies the order (ORDER=permutation) in which axes are to be laid out in the listing.

Examples:

yes? LIST/ORDER=XY sst !X varies fastest
yes? LIST/ORDER=YX sst !Y varies fastest

The “permutation” string may be any permutation of the letters X, Y, Z, and T. /ORDER is
applicable only to /FORMAT=unf and FORTRAN formats.

Note that a 1-dimensional list will, by default, place only one value per record. The /ORDER
qualifier can cause the 1-dimensional list to occur in a single record. For example,

LIST/I=1:5 I

will list as 5 records whereas

LIST/I=1:5 /ORDER=X I

will list 5 values on a single record.

LIST/PRECISION=#
Controls the digit precision of LIST output



176    COMMANDS REFERENCE

Using the qualifier /PRECISION=#digits the output precision of the LIST command may be
easily controlled. This qualifier functions exactly as does the SET LIST/PRECISION=
command but it applies only to the current command.

LIST/RIGID
Valid only with /FORMAT=CDF. Indicates that Ferret should not create a NetCDF “record”
axis as the time axis for any of the variables listed with this command. Time axes are, instead,
of fixed length and the /APPEND qualifier is not usable to extend the listing.

LIST/SINGLY   
This qualifier is relevant only when multiple expressions are specified in the LIST command.
When the /SINGLY qualifier is specified the entire listing of each expression including
(optional) heading and all data is completed before proceeding to the next expression.

By default the expressions are not listed singly—each line contains one value of each
expression. The qualifier has no effect if only a single expression is specified. If the /FILE
qualifier is specified to use automatic filename generation and /APPEND is not specified,  then
each expression is listed to a separate file.

LIST/TITLE=“title string”
Valid only with /FORMAT=CDF. Causes the global attribute “title” to be defined in a NetCDF
file, thereby setting its title.

18  LOAD
/I/J/K/L /X/Y/Z/T /D /NAME /PERMANENT /TEMPORARY

Loads a variable or expression into memory.

yes? LOAD[/qualifiers]   [expression_1 , expression_2 , ...]

Loading may speed execution of later commands that will require the loaded data. Often it is
helpful to LOAD a large region of data encompassing several small regions in which the
analysis will be pursued.

Load interacts with the current context exactly as other “action” commands CONTOUR, PLOT,
SHADE, VECTOR, LIST, etc. do. 

Parameters
Expressions may be any valid expression. See Chapter 3, section “Expressions” for a definition
of valid expressions. If multiple variables or expressions are specified they are treated in
sequence. The expression(s) will be inferred from the current context if omitted from the
command line.

Command qualifiers for LOAD:



COMMANDS REFERENCE    177

LOAD/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression(s) being loaded.

LOAD/D=
Specifies the default data set to be used when evaluating the expression(s) being loaded.

LOAD/NAME
Obsolete. Provided for compatibility with much older Ferret versions.

LOAD/PERMANENT
Data loaded with LOAD/PERMANENT are kept in memory until a LOAD/TEMPORARY
command is given that refers to the same data. See command LOAD/TEMPORARY. Note that
this command may cause memory fragmentation. It should generally be given immediately
following CANCEL MEMORY and preferably is used only to load file variables (as opposed
to expressions). 

LOAD/TEMPORARY   (default)
Data loaded with LOAD or LOAD/TEMPORARY is brought into memory but may be
unloaded based on a priority scheme of least recent use when memory space is required.

19  MESSAGE
/CONTINUE /QUIET

Displays a message at the terminal.

yes? MESSAGE text

By default a carriage return is required from the keyboard for program execution to continue
(used to halt the execution of a command file).

Command qualifiers for MESSAGE:

MESSAGE/CONTINUE
Continues program execution following the display of the message text without waiting for a
carriage return from the operator.

MESSAGE/QUIET
Waits for a carriage return from the operator but does not supply a prompt for it.

20  PALETTE

Alias for PPL SHASET SPECTRUM=. Specifies or restores the default color. 



178    COMMANDS REFERENCE

yes? PALETTE pal_name

The argument is the name of a palette file. Many palettes are included in the Ferret distribution.
Try the Unix command “Fpalette '*'” to see a list of available palette files. 

Some of the palettes are designed for particular needs. “centered.spk”, for example, emphasizes
the contrast between positive and negative shade levels. “land_sea.spk” uses blue tones for
negative values and browns and greens for positive values, making it suitable for topography
displays. 

Palette files end in the file suffix .spk, but the suffix is not necessary when specifying a palette.
Use GO try_palette pal_name  to display a palette. The GO files “exact_color.jnl” and
“squeeze_colors.jnl” can be used to modify palettes. You can also create new palette files with
a text editor. See Chapter 6, section “Shade and fill colors” for the format of a palette file. 

PALETTE with no argument restores the default palette. When you use the qualifier
/PALETTE= in conjunction with /SET_UP, PPLUS makes the specified color spectrum the
new default palette, and all subsequent shaded or color-filled plots will use that palette as the
default. To restore the previous palette to the default, use PALETTE with no argument after
your customization. 

21  PLOT
/I/J/K/L /X/Y/Z/T /D /FRAME /LINE /NOLABEL /OVERLAY
/SET_UP /SYMBOL /TITLE /TRANPOSE /VS
/XLIMITS /YLIMITS

Produces a line plot.

yes? PLOT[/qualifiers]   [expression_1 , expression_2 , ...]

The indicated expression(s) must represent a line (not a plane) of data (PLOT/VS is an
exception). Unless the /VS qualifier is used, the independent variable is the underlying
coordinate axis for this line of data.

Example:

yes? PLOT/l=1:100 sst

produces a time series plot of the first 100 points of sst.

Parameters
The argument(s) for PLOT specify the variable or expression to be plotted.



COMMANDS REFERENCE    179

When the /VS qualifier is used the indicated expressions may have any geometry in 4D space
but they must match in the total number of points in each expression. The points are  associated
in the order of their underlying axes. When the /VS qualifier is not used the indicated
expression(s) must describe a line (not a plane) of data.

The expression(s) are inferred from the current context if omitted from the command line—i.e.,
if no expression is given then the argument most recently given is used, or the default
expression may be explicitly set with SET EXPRESSION. 

Command qualifiers for PLOT:

PLOT/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression(s) being plotted.

PLOT/D=
Specifies the default data set to be used when evaluating the expression(s) being plotted.

PLOT/FRAME
Causes the graphic image produced to be captured as an animation frame and written to the
movie file specified by SET MOVIE.

PLOT/LINE[=]
The /LINE qualifier without =n causes the PLOT command to connect the plotted points with
a line regardless of the state of the /SYMBOLS qualifier.

/LINE=n specifies the line style. “n” is an integer between 1 and 18. Line style “1” is always
a solid line in the foreground color (black or white). Other line styles are device dependent
(colors or dash patterns). For color devices, n=1–6 draws single-thickness lines each a different
color. n=7–12 draws double-thick lines in the same color order, and n=13–18 draws triple-thick
lines. See Chapter 6, section “Text and line colors” for a chart of the default colors.

PLOT/NOLABELS
Suppresses all plot labels except axis labels. 

PLOT/OVERLAY
Causes the indicated field(s) to be overlaid on the existing plot. This qualifier can also be used
to overlay lines or symbols on 2D plots (SHADE, CONTOUR, or VECTOR) provided the axis
scalings are appropriate.

PLOT/SET_UP
Performs all the internal preparations required by program Ferret for plotting but does not
actually render the plot. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL PLOT command. This makes possible certain customizations
that are not possible with Ferret command qualifiers. See Chapter 6.



180    COMMANDS REFERENCE

PLOT/SYMBOL[=]
The /SYMBOL qualifier causes the PLOT command to mark each plotted point with a symbol.
If the /LINE qualifier is given too the symbols are also connected with a line; if /LINE is
omitted no connecting line is drawn.

Optionally, the symbol number may be explicitly specified as an integer value between 1 and
88. The integer refers to the PPLUS plot marker numbers (e.g., 1 for x, 3 for +, etc.). Type “GO
show_symbols” and “GO show_88_syms”  at the Ferret prompt to see available symbols and
their reference numbers. The symbols are also documented on page 1 of the document
$FER_DIR/doc/pplus_fonts.ps.

PLOT/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. 

PLOT/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn
horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data axis
is vertical by default.

PLOT/VS
Specifies that the first expression given in the command line is to be used as the independent
axis.

Example:

yes? PLOT/Y=20S:20N/X=180/T=27740:27741/Z=100/VS  temp , salt

Produces a plot of salinity (vertical axis) against temperature (horizontal axis) along the
indicated range of latitudes and times. The plot will be labeled “salt”; the vertical (dependent)
variable is the one that determines the key. The qualifier /TRANSPOSE can be used in
conjunction with /VS to further manipulate the labeling and axis orientation.

PLOT/VS implies /SYMBOL by default to produce scatter plots. Use PLOT/VS/LINE to
produce a line plot.

PLOT/XLIMITS=
Specifies axis range and tic interval for the X axis. Without this qualifier Ferret selects a
reasonable range. 

yes? PLOT/XLIMITS=lo:hi:[increment]  [expression(s)]



COMMANDS REFERENCE    181

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis is reversed.

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. Plots may be transposed manually with the /TRANSPOSE qualifier. On transposed
plots /XLIMITS will refer to the vertical axis of the plot.

PLOT/YLIMITS=
Specifies the axis range and tic interval for the Y axis. See /XLIMITS.

22  PPLUS
/RESET

Invokes PPLUS (“PLOT PLUS” written by Don Denbo) to execute a command or commands.

yes? PPLUS !(also PPL); invokes PPLUS interactively

or
yes? PPL pplus_command !executes a single PPLUS command

or
yes? PPL/RESET !restores PPLUS to start-up defaults

Example:

yes? PPL CROSS 1 !reference line through zero

Executes the PPLUS command “CROSS”  and immediately returns control to Ferret.

When PPLUS is invoked interactively the prompt is “PPL>” instead of the usual “yes? ”. The
EXIT command given at the “PPL>” prompt returns control to Ferret.

See Chapter 6 for more information on Ferret/PPLUS interactions. A complete list of PPLUS
commands is in PLOT PLUS for Ferret User’s Guide.

Command Qualifiers for PPLUS:

PPLUS/RESET
Restores PPLUS to start-up settings.

23  QUIT

Alias for EXIT; also just Q.



182    COMMANDS REFERENCE

24  REPEAT
/I/J/K/L /X/Y/Z/T

Repeats a command or group of commands over a range of values along an axis.

yes? REPEAT/q=lo:hi[:increment] COMMAND

The units of lo, hi, and increment are the units of the underlying grid axis if the qualifier is X,
Y, Z, or T. The qualifiers I, J, K, or L advance the repeat loop by incrementing the indicated
index (the default index increment is 1). Use SHOW GRID to examine the axis units (if the
units are not displayed try CANCEL MODE LATITUDE, LONGITUDE, or CALENDAR as
appropriate). To run the loop from the highest value decreasing towards the lowest value,
specify increment to be less than zero. Any command or group of commands that can be
specified at the command line can also be given as an argument to REPEAT. If MODE
VERIFY is SET, the current loop index is displayed at the console as REPEAT executes. 

Examples:

1) yes? REPEAT/L=1:240 CONTOUR/Y=30S:50N/X=130E:70W/LEV/FRAME sst

Produces a 240-frame movie of sea surface temperature.

2) yes? REPEAT/Z=300:0:-30 GO compz

Executes the command file compz.jnl at Z=300, Z=270, ..., Z=0.

3) yes? REPEAT/L=1:250:5 (GO set_up; CONTOUR sst; FRAME)

Repeats three commands—execution of a GO script, CONTOUR, and FRAME—for each
timestep specified.

Command qualifiers for REPEAT:

REPEAT/I=/J=/K=/L=/X=/Y=/Z=/T=
Repeats the requested command(s) for the specified range of axis subscripts (I, J, K, or L) or
axis coordinates (X, Y, Z, or T). Note that when T axis limits are specified as dates, the units
of increment are hours.

25  SAVE

The SAVE command is an alias for LIST/FORMAT=CDF. All qualifiers and restrictions are
identical to LIST/FORMAT=CDF.



COMMANDS REFERENCE    183

Example:

yes? SAVE temp, salt

is identical to
yes? LIST/FORMAT=CDF temp, salt

Notes:
1) Gaps in NetCDF outputs are filled with the missing value flag of the variable being written.

(See Chapter 3, section “Missing value flags.”)  In the example below, if “temp” and “salt”
share the same time axis then the L=2:4 values of salt will be so filled.

yes? SAVE/FILE=test.cdf   temp[L=1:5], salt[L=1], salt[L=5]

2) Transformations which compress an axis to a point produce results that Ferret regards as
time-independent. thus, this 12-month average:

yes? SAVE/FILE=annual.cdf  sst[L=1:12@AVE]

creates a NetCDF file with no time axis. It would not be possible to append the average of the
next 12 months as the next time step of this file. However, a time location can be inherited from
another variable. In this example, we inherit the time axis of “timestamp” in order to create a
time axis in the NetCDF file.

yes? DEFINE AXIS/T="1-JUL-1980":"1-JUL-1985"/UNIT=year  tannual
yes? DEFINE GRID/T=tannual  gannual
yes? LET  timestamp = T[G=gannual] * 0 !always 0
yes? LET  sst_ave = sst[L=1:12@AVE] + timestamp
yes? SAVE/FILE=annual.cdf  sst_ave[L=1]
yes? LET  sst_ave = sst[L=13:24@AVE] + timestamp
yes? SAVE/FILE=annual.cdf/APPEND  sst_ave[L=2]
.
.
. etc.

3) Background documentation about the definition and data set of origin for a variable are
saved in the “history” attribute of a variable when it is first saved in the NetCDF file. If the
definition of the variable is then changed, and more values are inserted into the file using
SAVE/APPEND, the modified definition will NOT be documented in the output file. If the
new definition changes the defining grid for the variable the results will be unpredictable.

26  SET

Sets features of the operating environment for program Ferret.

Generally, features may be toggled on and off with SET and CANCEL. Features affected by
SET may be examined with SHOW (see also CANCEL and SHOW).



184    COMMANDS REFERENCE

26.1  SET AXIS

Indicates that an axis is to be treated as a modulo axis (the first point “wraps” and follows the
last point, as in a longitude axis). Valid only with /MODULO.

yes? SET AXIS/MODULO  x_ax

26.2  SET DATA_SET
/FORMAT /RESTORE /SAVE /EZ        
SET DATA/EZ    /COLUMNS /FORMAT /GRID /SKIP /TITLE /VARIABLE

Specifies ASCII, binary, NetCDF, GT, or TS-formatted data set(s) to be analyzed. 

1) ASCII or binary:
yes? SET DATA/EZ[/qualifiers] data_set1, data_set2, ...

or equivalently, with alias FILE:
yes? FILE[/qualifiers] data_set1, data_set2, ...

2) NetCDF:
yes? SET DATA/FORMAT=cdf  NetCDF_file

or equivalently, with alias USE
yes? USE NetCDF_file

3) GT or TS-formatted:
yes? SET DATA data_set1, data_set2, ...

In the case of GT or TS-formatted files, an extension of .des is assumed. A previously SET data
set can be SET by its reference number, as shown by SHOW DATA, rather than by name.

If a Unix filename includes a path (with slashes) then the full path plus name must be enclosed
in double quotation marks.

Note:  Maximum simultaneous data sets: 60 (as of Ferret ver. 3.1). Use CANCEL DATA if the
limit is reached.

Command qualifiers for SET DATA_SET:

SET DATA/FORMAT=
Specifies the format of the data set(s) being SET. Allowable values for “file_format” are “cdf”,
“free”, “unformatted”, “stream”  or a FORTRAN format in quotation marks and parentheses.

yes? SET DATA/FORMAT=file_format [data_set_name_or_number]

Valid arguments for /FORMAT=

1) free (default for SET DATA/EZ)



COMMANDS REFERENCE    185

To use the format “free” a file must consist entirely of numerical data separated by commas,
blanks or tabs. 

2) cdf
If SET DATA/FORMAT=cdf (alias USE) is used, the data file must be in CDF format. The
default filename extension is “.cdf”.

Example:

yes? SET DATA/FORMAT=CDF  my_netcdf

or equivalently,
yes? USE  my_netcdf

3) unformatted
To use the format “unformatted” the data must be floating point, binary, FORTRAN-style
records with all of the desired data beginning on 4-byte boundaries. This option expects 4
bytes of record length information at the beginning and again at the end of each record. The
“-” designator (see /VARIABLES) can be used to skip over unwanted 4-byte quantities
(variables) in each record. See Chapter 2, section “Binary data.”

4) FORTRAN format string
FORTRAN format specifications should be surrounded by parentheses and enclosed in
quotation marks.

Example:

yes? SET DATA/EZ/FORMAT="(5X,F12.0)" my_data_set

or equivalently,
yes? FILE/FORMAT="(5X,F12.0)" my_data_set

5) stream   (Ferret version 3.1)
/FORMAT=stream is used to indicate that a file contains either unstructured binary output
(typical of C program output) or fixed-length records suitable for direct access (all records
of equal length, no record length information embedded in the file). With caution it is also
possible to read FORTRAN variable-length record output. This sort of file is typically
created by “quick and dirty” FORTRAN code which uses the simplest FORTRAN OPEN
statement and outputs entire variables with a single WRITE statement.

This format specifier allows you to access any contiguous stretch of 4-byte values from the
file. The /SKIP=n qualifier specifies how many values should be skipped at the file start.
The /GRID=name qualifier specifies the grid onto which the data should be read and
therefore the number of values to be read from the file (the number of points in the grid).
Note that an attempt to read more data than the file contains, or to read record length
information, will result in a fatal FORTRAN error on UNIX systems and will crash the
Ferret program.   

 



186    COMMANDS REFERENCE

For multiple variables, use the /COLUMNS=n specifier to specify how many 4-byte values
separate each variable in the file. Each variable is assumed to represent a contiguous stream
of values within the file and all variables are assumed to possess the same number of points.
(A “poor man’s” method is to create multiple Unix soft links pointing to the same file and
multiple SET DATA/EZ commands to specify one variable from each link name.)

See Chapter 2, section “Binary data” for further discussion and examples of binary types.

SET DATA/RESTORE
Restores the current default data set number that was saved with SET DATA/SAVE.

This is useful in creating GO files that perform their function and then restore Ferret to its
previous state.

SET DATA/SAVE
Saves the current default data set number so it can be restored with SET DATA/RESTORE.

This is useful in creating GO files that perform their function and then restore Ferret to its
previous state.

SET DATA/EZ
Accesses data from an ASCII or unformatted file that is not in a standardized format (TMAP
or NetCDF). The command FILE is an alias for SET DATA/EZ.

yes? SET DATA/EZ[/qualifiers]   ASCII_or_binary_file

or, equivalently,
yes? FILE[/qualifiers]  ASCII_or_binary_file

Example:

yes? FILE/VARIABLE=my_var my_data.dat

See Chapter 2, section “ASCII data” for more information and examples.

Command qualifiers for SET  DATA_SET/EZ:

SET DATA/EZ/COLUMNS=n
Specifies the number of columns in the EZ data file. 

By default the number of columns is assumed to be equal to the number of variables (including
“-”’s) specified by the /VARIABLES qualifier.

SET DATA/EZ/GRID=  
Specifies the defining grid for the data in the EZ data set. The argument can be the name of a
grid or the name of a variable that is already defined on the desired grid. 



COMMANDS REFERENCE    187

Example:

yes? SET DATA/EZ/GRID=sst[D=coads] snoopy

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) is specified. By default Ferret uses grid EZ, a line of up to 20480 points oriented along the
X axis.

SET DATA/EZ/ORDER=     (Ferret version 3.11)
Specifies the order (ORDER=permutation) in which axes are to be read.

Examples:

yes? FILE/ORDER=XY sst !X varies fastest
yes? LIST/ORDER=YX sst !Y varies fastest

The “permutation” string may be any permutation of the letters X, Y, Z, and T.

SET DATA/EZ/SKIP=n 
Specifies the number of records to skip at the start of an EZ data set before beginning to read
the data. By default, no records are skipped. 

For ASCII files a “record” refers to a single line in the file (i.e., a newline character). If the
FORMAT statement contains slash characters the “data record” may be multiple lines; the
/SKIP qualifier is independent of this fact.

For FORTRAN-structured binary files the /SKIP argument refers to the number of binary
records to be skipped.

For unstructured (stream) binary files (e.g., output of a C program) the /SKIP argument refers
to the number of words (4-byte quantities) to skip before reading begins.

SET DATA/EZ/TITLE=
Associates a title with the data set. 

yes? SET DATA/EZ/TITLE="title string"  file_name

This title appears on plotted outputs at the top of the plot.

SET DATA/EZ/VARIABLES=
Names the variables of interest in the file. Default is v1.

yes? FILE/VARIABLES="var1,var2,..."  file_name

Except in the case of /FORMAT=stream, Ferret assumes that successive values in the data file
represent successive variables. For example, if there are three variables in a file, the first value



188    COMMANDS REFERENCE

represents the first variable, the second represents the second variable, the third the third
variable, and the fourth returns to representing the first variable. The maximum number of
variables allowed in a single data set is 20.

Variable names may be 1 to 24 characters (letters, digits, $, and _) beginning with a letter. To
indicate a column is not of interest use “-” for its name.

Example:  (the third column of data will be ignored)

yes? SET DATA/EZ/VARIABLES="temp,salt,-,u,v" ocean_file.dat

26.3  SET EXPRESSION

Specifies the default context expression. When Ferret’s “action” commands (PLOT,
CONTOUR, SHADE, VECTOR, WIRE, etc.) are issued with no argument, the default context
expression is used. This is the expression last used as argument to an action command, or it may
be set explicitly with SET EXPRESSION. See Chapter 3, section “Expressions” for a full list
of action commands.

yes? SET EXPRESSION expr1 , expr2 , ...

Examples:

1) yes? SET EXPRESSION temp

Sets the current expression to “temp”.

2) yes? SET EXPRESSION u , v , u^2 + v^2

Set the current expressions to “u , v , u^2 + v^2”

26.4  SET GRID
/RESTORE /SAVE

Specifies the default grid for abstract expressions. Type “GO wire_frame” at the Ferret prompt
for an example of usage.

yes? SET GRID[/qualifier] [grid_or_variable_name]

Examples:

yes? SET GRID sst[D=coads]

yes? SET GRID ! use grid from last data accessed

See Chapter 4, “Grids and Regions.”



COMMANDS REFERENCE    189

Command qualifiers for SET GRID:

SET GRID/RESTORE
Restores the current default grid last saved by SET GRID/SAVE. Useful together with SET
GRID/SAVE to create GO files that restore the state of Ferret when they conclude.

SET GRID/SAVE
Saves the current default grid to be restored later. Useful together with SET GRID/RESTORE
to create GO files that restore the state of Ferret when they conclude.

26.5  SET LIST
/APPEND /FILE /FORMAT /HEADING /PRECISON

Uses SET LIST to specify the default characteristics of listed output.

yes? SET LIST/qualifiers

The state of the list command may be examined with SHOW LIST. See command CANCEL
LIST and LIST.

Command qualifiers for SET LIST:

SET LIST/APPEND
Specifies that by default the listed output is to be appended to a pre-existing file. Cancel this
state with CANCEL LIST/APPEND.

SET LIST/FILE=
Specifies a default file for the output of the LIST command.

yes? SET LIST/FILE=filename

The filename specified in this way is a default only. It will be used by the command

yes? LIST/FILE variable

but will be ignored in
yes? LIST/FILE=snoopy.dat variable

Ferret generates a filename based on the data set, variable, and region if the filename specified
is “AUTO”. The resulting name is often quite long but may be shortened by following “AUTO”
with a minus sign and the name(s) of the axes to exclude from the filename.

Note: the region information is not used in automatic NetCDF output filenames.



190    COMMANDS REFERENCE

Examples:

yes? SET LIST/FILE=AUTO
yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.X140W110WY2S2NL500.

yes? SET LIST/FILE=AUTO-XY
yes? LIST/L=500/X=140W:110W/Y=2S:2N/FILE sst[D=coads]

Sends data to file WcoadsSST.L500.

SET LIST/FORMAT=
Specifies an output format for the LIST command. (When a FORTRAN format is specified the
row and column headings are omitted from the output.)

yes? SET LIST/FORMAT=option
yes? SET LIST/FORMAT !reactivate previous format

Options:
FORTRAN format produces ASCII output
“UNFORMATTED” produces unformatted (binary) output
“CDF” produces NetCDF output
“GT” produces TMAP GT format

Examples:

1) yes? SET LIST/FORMAT=(1X,12F6.1)

Specifies a FORTRAN format (without row or column headings).

2) yes? SET LIST/FORMAT=UNFORMATTED

Specifies binary output. (FORTRAN variable record length record structure.)

Notes:
1) When using GT format all variables named in a single LIST command will be put

into a single GT-formatted timestep.
2) Very limited error checking will be done on FORTRAN formats.
3) FORTRAN formats are reused as necessary to output full record.
4) Latitude axes are listed south to north when /FORMAT is specified.

SET LIST/HEAD
Specifies that ASCII output is to be preceded by a heading that documents data set, variable,
and region. Cancel the heading with CANCEL LIST/HEAD.

SET LIST/PRECISION



COMMANDS REFERENCE    191

Specifies the data precision (number of significant digits) of the output listings. This qualifier
has no effect when /FORMAT= is specified.

yes? SET LIST/PRECISION=#_of_digits

26.6  SET MEMORY
/SIZE

yes? SET MEMORY/SIZE=megawords

The command SET MEMORY provides control over how much “physical” memory Ferret can
use. (In reality the distinction between physical and virtual memory is invisible to Ferret. The
SET MEMORY command merely dictates how much memory Ferret can attempt to allocate
from the operating system.)

SET MEMORY controls only the size of Ferret’s cache memory—memory used to hold
intermediate results from computations that are in progress and used to hold the results of past
file IO and computations for re-use. The default size of the memory cache is 3.2 megawords
(equivalently, 3.2×4=12.8 megabytes). Cache memory size can be set larger or smaller than this
figure.

Example:

yes? SET MEMORY/SIZE=4.2

Sets the size of Ferret’s memory cache to 4.2 million (4-byte) words.

Notes:
• As a practical matter memory size should not normally be set larger than the physical

memory available on the system.
• The effect of SET MEMORY/SIZE= is identical to the “-memsize” qualifier on the

Ferret command line.
• See SET MODE DESPERATE and MEMORY USAGE in this users guide for further

instructions on setting the memory cache size appropriately.
• The effects of SET MEMORY/SIZE last only for the current Ferret session. Exiting

Ferret and restarting will reset the memory cache to its default size.
• If memory is severly limited on a system Ferret’s default memory cache size may be too

large to permit execution. In this case use the “-memsize” qualifier on the command line
to specify a smaller cache.

26.7  SET MODE
/LAST

Specifies special operating modes or states for program Ferret.



192    COMMANDS REFERENCE

yes? SET MODE[/LAST] mode_name[:argument]

MODE DESCRIPTION DEFAULT STATE
ASCII_FONT imposes PPLUS ASCII font types on plot labels set
CALENDAR uses date strings for T axis (vs. time step values) set
DEPTH_LABEL uses “DEPTH” as Z axis label set
DESPERATE attempts calculations too large for memory canceled
DIAGNOSTIC turns on internal program diagnostic output canceled
GUI unsupported; used in GUI development 
IGNORE_ERROR continues command file after errors canceled
INTERPOLATE automatically interpolates data between planes canceled
JOURNAL records keyboard commands in a journal file set
LATIT_LABEL uses “N” “S” notation for labeling latitudes set
LONG_LABEL uses “E” “W” notation for labeling longitudes set
METAFILE captures graphics in GKS metafiles canceled
POLISH interprets expressions in Reverse Polish order canceled
PPLLIST listed output from PPLUS is directed to the named file canceled
REFRESH refreshes graphics on systems lacking “backing store” canceled
SEGMENT utilizes GKS segment storage set
STUPID does not cache data in memory (diagnostic) canceled
VERIFY displays each command file line as it is executed set
WAIT waits for carriage return after each plot canceled

Command qualifiers for SET  MODE:

SET MODE/LAST
Resets mode to its last state.

yes? SET MODE/LAST mode_name

Example: (a command file that will not alter Ferret modes)

yes? SET MODE IGNORE_ERRORS      ! 1st line of command file

.

. ... code which may encounter errors

.
yes? SET MODE/LAST IGNORE_ERRORS ! last line of command file

26.7.1 SET MODE ASCII_FONT

The SET MODE ASCII_FONT command causes program Ferret to precede plot labels with
the PPLUS font descriptor “@AS” (ASCII SIMPLEX font). This assures that special characters
(e.g., underscores) are faithfully reproduced. For special plots it may be desirable to use other
fonts (e.g., to obtain subscripts). CANCEL MODE ASCII_FONT is for these cases.

default state: set



COMMANDS REFERENCE    193

26.7.2  SET MODE CALENDAR

SET MODE CALENDAR causes program Ferret to output times in date/time format (instead
of time axis time step values). This affects both plotted and listed output.

This mode accepts an optional argument specifying the degree of precision for the output date.
If the argument is omitted the precision is unchanged from its last value.

default state: set (argument: minutes)

Arguments
SET MODE CALENDAR accepts the following arguments:

Argument Equivalent precision

SECONDS -6
MINUTES -5 (default)
HOURS -4
DAYS -3
MONTHS -2
YEARS -1

The argument is uniquely identified by the first two characters.

Example:

yes? SET MODE CALENDAR:DAYS

Causes times to be displayed in the format dd-mmm-yyyy.

When CALENDAR mode is canceled the “equivalent” in the table above determines the
precision of the time steps displayed exactly as in SET MODE LONGITUDE.

26.7.3  SET MODE DEPTH_LABEL

SET MODE DEPTH_LABEL causes Ferret to label Z coordinate information in the units of
the Z axis. This affects both plotted and listed output. This mode accepts an optional argument
specifying the degree of precision for the output. If the argument is omitted the precision is
unchanged from its last value.

yes? SET MODE DEPTH:argument

default state: set  (argument: -4)



194    COMMANDS REFERENCE

Arguments
See SET MODE LONG for a detailed description of precision control.

26.7.4  SET MODE DESPERATE

Ferret checks the size of the component data required for a calculation in advance of
performing the calculation. If the size of the component data exceeds the value of the MODE
DESPERATE argument Ferret attempts to perform the calculation in pieces.

For example, the calculation “LIST/I=1/J=1 U[K=1:100,L=1:1000@AVE]” requires
100*1000=100,000 points of component data although the result is only a line of 100 points on
the K axis. If 100,000 exceeds the current value of the MODE DESPERATE argument Ferret
splits this calculation into smaller sized chunks along the K axis, say, K=1:50 in the first chunk
and K=51:100 in the second.

Ferret is also sensitive to the performance penalties associated with reading data from the disk.
Splitting the calculation along axis of the stored data records can require the data to be read
many times in order to complete the calculation. Ferret attempts to split calculations along
efficient axes, and will split along the axis of stored data only in desperation, if MODE
DESPERATE is SET.

Example:

yes? SET MODE DESPERATE:5000

default state: canceled   (default argument: 80000)

Note: Use MODE DIAGNOSTIC to see when splitting is occuring.

Arguments
Use SHOW MEMORY/FREE to get a notion of the total memory available. The product of
“total memory blocks” times “memory block size” is the total words of internal storage—to be
compared to the argument of SET MODE DESPERATE.

By default the argument is set at one tenth of available memory. It may be raised or lowered
depending on the number and size of simultaneous components needed for calculations. The
upper bound for the argument is the total number of words of internal storage. The lower bound
is “memory block size.”

26.7.5  SET MODE DIAGNOSTIC

SET MODE DIAGNOSTIC causes Ferret to display diagnostic information in real time about
its internal functioning. It is intended to help Ferret developers diagnose performance problems
by displaying what the Ferret memory management subsystem is doing. The message “strip
gathering on xxx axis” indicates that Ferret has broken up a calculation into smaller pieces.



COMMANDS REFERENCE    195

Subsequent “strip” and “gathering” messages indicate that sub-regions of the calculations are
being processed and brought together.

default state: canceled

26.7.6  SET MODE IGNORE_ERROR

SET MODE IGNORE_ERROR causes Ferret to continue execution of a command file  despite
errors encountered. (See command GO.)

default state: canceled

26.7.7  SET MODE INTERPOLATE

Note: The tranformation @ITP provides the same functionality as MODE INTERPOLATE
with a greater level of control.

SET MODE INTERPOLATE affects the interpretation of world coordinate specifiers (/X, /Y,
/Z, and /T) in cases where the position is normal to the plane in which the data is being
examined. When this mode is SET and a world coordinate is specified which does not lie
exactly on a grid point, Ferret automatically interpolates from the surrounding grid point values.
When this mode is canceled, the same world coordinate specification is shifted to the grid point
of the grid box that contained it before computations were made (see examples).

default state: canceled

Example:

If the grid underlying the variable temp has points defined at Z=5 and at Z=15 (with the grid
box boundary at Z=10) and data is requested at Z=12 then

yes? SET MODE INTERPOLATE
yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists temperature data in the X-Y plane obtained by interpolating between the Z=5 and Z=15
planes. Whereas,

yes? CANCEL MODE INTERPOLATE
yes? LIST/T=18249/X=130W:125W/Y=0:3N/Z=12 temp

lists the data at Z=15. The output documentation always reflects the true location used.

26.7.8  SET MODE JOURNAL

SET MODE JOURNAL causes Ferret to record all commands issued in a journal file. Output
echoed to this file may be turned on and off via mode JOURNAL at any time.



196    COMMANDS REFERENCE

default state: set

Example:

yes? SET MODE JOURNAL:my_journal_file.jnl

The optional argument to MODE JOURNAL specifies the name of the output journal
file—with no argument, the default name “ferret.jnl” is used. Journal files for successive Ferret
sessions are handled by version number. See Chapter 7, section “Output file naming.”

26.7.9  SET MODE LATIT_LABEL

SET MODE LATIT_LABEL causes Ferret to output latitude coordinate information in degrees
N/S format (instead of the internal latitude coordinate). This affects both plotted and listed
output.

This mode accepts an optional argument specifying the degree of precision for the output. If
the argument is omitted the precision is unchanged from its last value.

Example:

yes? SET MODE LAT:2

default state: set  (argument: 1)

Arguments
See command SET MODE LONG for a detailed description of precision control.

26.7.10  SET MODE LONG_LABEL

SET MODE LONG_LABEL causes Ferret to output longitude coordinate information in
degrees E/W format (instead of the internal longitude coordinate). This will affect both plotted
and listed output.

This mode accepts an optional argument specifying the degree of precision for the output. If
the argument is omitted the precision will be unchanged from its last value.

Example:

yes? SET MODE LONG:2

default state: set  (argument: 1)



COMMANDS REFERENCE    197

Arguments
The argument of SET MODE LONG is an integer specifying the precision. If the argument is
positive or zero it specifies the maximum number of decimal places to display. If the argument
is negative it specifies the maximum number of significant digits to display.

Examples:

Suppose the longitude to be displayed is 165.23W. Then

yes? SET MODE LONG:1    will produce 165.2W
yes? SET MODE LONG:-3   will produce 165W

When LONG mode is canceled the argument still determines the output precision.

26.7.11  SET MODE METAFILE

SET MODE METAFILE causes Ferret to capture all graphics in metafiles. These metafiles can
later be routed to various devices to obtain hard copy output.

The optional argument to MODE METAFILE specifies the name of the output metafile—with
no argument, the default name “metafile.plt” is used. Multiple output files (i.e., successive
plots) are handled by version number. See Chapter 7, section “Output file naming.”

See Chapter 7, section “Hard copy” for details on generating hard copy.

Example:

yes? SET MODE METAFILE:june_sst.plt

default state: canceled (default argument when set: “metafile.plt”)

26.7.12  SET MODE POLISH

The SET MODE POLISH command causes program Ferret to expect algebraic expressions to
be entered in Reverse Polish order.

This mode exists only to assist with compatibility with earlier versions of Ferret. It has no
efficiency advantages.

default state: canceled

26.7.13  SET MODE PPLLIST

Directs listed output from PPLUS commands (e.g., PPL LIST LABS) to the specified file. This
mode is useful for creating scripts that customize plots. The user can specify the name of the
output file by giving it as an argument, otherwise file name “ppllist.out” is assigned. 



198    COMMANDS REFERENCE

Example:

yes? SET MODE PPLLIST:plot_symbols.txt
yes? PPL LISTSYM
yes? SPAWN grep "WIDTH" plot_symbols.txt

default state: canceled
 

26.7.14  SET MODE REFRESH

The SET MODE REFRESH command causes Ferret to update windows following “occlusion”
events on X-servers that lack a backing store (SGI workstations have been a case in point). 

default state: canceled  (except on SGI systems)

26.7.15  SET MODE SEGMENTS

SET MODE SEGMENTS causes Ferret to utilize GKS segments (“GKS” is the Graphical
Kernel System—an international graphics standard). On some systems MODE SEGMENTS
may be necessary to update windows following “occlusion” events or to resize window with
the mouse.

Segments, however, make heavy demands on the system’s virtual memory. If Ferret crashes
during graphics output due to insufficient virtual memory try CANCEL MODE SEGMENTS.

default state: set

26.7.16  SET MODE STUPID

SET MODE STUPID causes Ferret to forget data cached in memory. The result is that all
requests for variables are read from disk rather than located in memory and reused from a
previous read. The program will be significantly slower as a result. (This command is included
for diagnostic purposes.)

default state: canceled

26.7.17  SET MODE VERIFY

SET MODE VERIFY causes commands from a command file (“GO file”) to be displayed on
the screen as they are executed. Note that if MODE VERIFY is canceled, loop counting in the
REPEAT command is turned off.

default state: SET, argument “default”



COMMANDS REFERENCE    199

Note: Many GO files begin with CANCEL MODE VERIFY to inhibit output and end with
SET MODE/LAST VERIFY to restore the previous state. Only if an error or interrupt occurs
during the execution of such a command file will the state of MODE VERIFY be affected.

SET MODE VERIFY can accept arguments to further refine control over command echoing.

yes? SET MODE VERIFY: DEFAULT

• This will be the default state if no argument is given
• Ferret echos commands taken from GO scripts
• Ferret echos commands in which symbol substitutions occur or in which embedded

expressions are evaluated
• Ferret displays a REPEAT loop counter ("!-> REPEAT: ...") 

yes? SET MODE VERIFY: ALL

• in addition to the cases above Ferret also displays the individual commands that are
generated by repeat loops and semicolon-separated command groups

yes? SET MODE VERIFY: ALWAYS

• echoing behavior is the same as argument ALL but ALWAYS, in addition, causes
CANCEL MODE VERIFY to be ignored when it is encountered in a GO file. This
functionality is useful when debugging GO scripts. Entering CANCEL MODE
VERIFY or SET MODE VERIFY:DEFAULT from the command line will cancel
this  state.

26.7.18  SET MODE WAIT

SET MODE WAIT causes Ferret to wait for a keyboard keystroke from the user after each
plotted output is completed. This is useful on graphics terminals that do not have a separate
graphics plane; on these terminals SET MODE WAIT prevents the graphical output from being
wiped off the screen until the user is ready to proceed.

default state: canceled

26.8   SET MOVIE
/COMPRESS /FILE /LASER /START

Designates a file (specified or default) for storing graphical images as movie frames (in HDF
Raster-8 format). Note that the FRAME/FILE=filename qualifier is generally preferable to the
SET MOVIE command, as it is simpler and more flexible. See Chapter 5 for further
explanation.

yes? SET MOVIE[/qualifiers]



200    COMMANDS REFERENCE

Command qualifiers for SET  MOVIE:

SET MOVIE/COMPRESS=
Turns on or off compression of HDF frames using run length compression.

yes? SET MOVIE/COMPRESS=OFF

The allowed arguments are “on” and “off” —CANCEL MOVIE does not affect this qualifier.

default state: on

SET MOVIE/FILE
Specify an output file to receive movie frames.

yes?  SET MOVIE/FILE=filename !specify a new filename

or
yes?  SET MOVIE/FILE !reactivate a previously specified filename\

after CANCEL MOVIE

The default movie filename extension is “.mgm”
The default movie filename is “ferret.mgm”

SET MOVIE/LASER
Output to Panasonic OMDR. Valid only on older VAX/VMS systems.

SET MOVIE/START
Only valid for use on older VAX/VMS systems with the Panasonic Optical Memory Disk
Recorder (OMDR). Only valid with /LASER qualifier. 

26.9  SET REGION
/I/J/K/L /X/Y/Z/T /DI/DJ/DK/DL /DX/DY/DZ/DT

Specifies the default space-time region for the evaluation of expressions.

yes? SET REGION[/qualifiers] [ reg_name]

See Chapter 4, section “Regions” for further information.

Examples:

1) yes? SET REGION/X=140E

Sets X axis position in the default context.

2) yes? SET REGION/@N !N specifies X and Y but not Z or T

Sets only X and Y in the default context (since X and Y are defined in region N but Z and
T are not). 



COMMANDS REFERENCE    201

3) yes? SET REGION N

Sets ALL AXES in the default region to be exactly the same as region N. Since Z and T are
undefined in region N they will be set undefined in the default context.

4) yes? SET REGION/@N/Z=50:250

Sets X and Y in the default region to be exactly the same as region N and then sets Z to the
range 50 to 250.

5) yes? SET REGION/DZ=-5

Set the region along the Z axis to be 5 units less than its current value.

6) yes? SET REGION/DJ=-10:10

Increases the current vertical axis range by 10 units on either end of the axis.

Command qualifiers for SET REGION:

SET REGION/I=/J=/K=/L=/X=/Y=/Z=/T=
Sets region bounds for specified axis subscript (I, J, K, or L) or axis coordinates (X, Y, Z, or
T). See examples above.

SET REGION/DI=/DJ=/DK=/DL=/DX=/DY=/DZ=/DT=
Modifies current region information by the specified increment of an axis subscript (I, J, K, or
L) or axis coordinate (X, Y, Z, or T).  See examples above. Syntax: /D*=val, or /D*=lo:hi.

26.10   SET VARIABLE
/BAD /GRID /TITLE /UNIT

Modifies attributes of a variable defined by DEFINE VARIABLE or SET DATA/EZ. This
command permits variables within a single EZ data set to be defined on different grids and it
allows the titles and units to be superseded for the duration of a session, only, on NetCDF and
GT data sets.

yes? SET VARIABLE/qualifiers variable_name

Parameters
The variable name can be a simple name or a name qualified by a data set.

Example:

yes? SET VAR/UNITS="CM" WIDTH[D=snoopy]



202    COMMANDS REFERENCE

Command qualifiers for SET VARIABLE:

SET VARIABLE/BAD=
Designates a value to be used as the missing data flag. The qualifier is applicable to EZ data set
variables and to NetCDF data sets. It applies only for the duration of the current Ferret session.
It does not alter the data files. It is not applicable to variables defined with DEFINE
VARIABLE.

SET VARIABLE/GRID=  
Sets the defining grid for a variable in an EZ data set.

Example:

yes? SET VARIABLE/GRID=my_grid width[D=snoopy]

This is the mechanism by which the shape of the data (1D along T axis, 2D in the XY plane,
etc.) is specified. By default Ferret will use grid EZ, a line of up to 20480 points oriented along
the X axis. The qualifier is not applicable to variables defined with DEFINE VARIABLE.

SET VARIABLE/TITLE=
Associates a title with the variable. This title appears on plotted outputs and listings. The
qualifier is applicable to all variables.

yes? SET VARIABLE/TITLE="title string" var_name

SET VARIABLE/UNITS=
Associates units with the variable. The units appear on plotted outputs and listings. The
qualifier is applicable to all variables.

yes? SET VARIABLE/UNITS="units string" var_name

26.11  SET VIEWPORT

Sets the rectangular region within the output window where output will be drawn.

yes? SET VIEWPORT view_name

Issuing the command SET VIEWPORT is best thought of as entering “viewport mode.”  While
in viewport mode all previously drawn viewports remain on the screen until explicitly cleared
with either SET WINDOW/CLEAR or CANCEL VIEWPORT. If multiple plots are drawn in
a single viewport without the use of /OVERLAY the current plot will erase and replace the
previous one; the graphics in other viewports will be affected only if the viewports overlap. If
viewports overlap the most recently drawn graphics will always lie on top, possibly obscuring
what is underneath. By default, the state of “viewport mode” is canceled.



COMMANDS REFERENCE    203

Pre-defined viewports exist for dividing the window into four quadrants and for dividing the
window in half horizontally and vertically. See Chapter 6, section “Pre-defined viewports” for
a list.

26.12  SET WINDOW
/ASPECT /CLEAR /LOCATION /NEW /SIZE

Creates, resizes, reshapes or moves graphics output windows.

yes? SET WINDOW[/qualifiers]  [window_number]

Note: Multiple windows may be simultaneously viewable but only a single window  receives
output at any time.

See commands SHOW WINDOW and CANCEL WINDOW for additional information.

Examples:

1) yes? SET WINDOW/NEW

Creates a new output window and sends subsequent graphics to it.

2) yes? SET WINDOW 3

Sends subsequent graphics to window 3.

3) yes? SET WINDOW/SIZE=.5

Resizes current window to 1/2 of full.

4) yes? SET WINDOW/ASPECT=.5

Reshapes current window with Y/X equal to 1:2.

5) yes? SET WINDOW/LOCATION=0,.5

Puts the lower left corner of the current window at the left border of the display and half
way up it.

Command qualifiers for SET WINDOW:

SET WINDOW/ASPECT
Sets the aspect ratio of the output window and hard copy.

Examples:

1) yes? SET WINDOW/ASPECT=y_over_x  n

Sets the overall aspect ratio of window n.

2) yes? SET WINDOW/ASPECT=y_over_x



204    COMMANDS REFERENCE

Sets the overall aspect ratio of the current window.

3) yes? SET WINDOW/ASPECT=y_over_x:AXIS

Sets the axis length aspect ratio of the current window.

The total size (area) of the output window is not changed.
The default value for the overall window ratio is y/x = 8.8/10.2 ~ 0.86.
The default value for the axis length ratio is y/x = 6/8 = 0.75.
Use PPLUS/RESET or SET WINDOW/ASPECT=.75:AXIS to restore defaults.
The aspect ratio specified is a default for future SET WINDOW commands
The origin (lower left) is restored to its default values:  1.2, 1.4

When using “SET WINDOW n” to return to a previous window that differs from the current
window in aspect ratio, it is necessary to re-specify its aspect ratio with /ASPECT, otherwise
PPLUS will not be properly reset.

SET WINDOW/CLEAR
Clears the image(s) in the current or specified window. Useful with viewports.

SET WINDOW/LOCATION
Sets the location for the lower left corner of named (or current) window. The coordinates x and
y must be values between 0 and 1 and refer to distances from the lower left corner of the
display screen (total length and width of which are each 1).

yes? SET WINDOW/LOCATION=x,y [window_number]

SET WINDOW/NEW
Causes future graphical output to be directed to a new window. The window will be created at
the next graphics output.

yes? SET WINDOW/NEW

SET WINDOW/SIZE
Resizes a window to r times the size of the standard window. If the window number is omitted
the command will resize the currently active window. (The default window size is 0.7.)

yes? SET WINDOW/SIZE=r [window_number]

27  SHADE
/I/J/K/L /X/Y/Z/T /D /FRAME /KEY /LEVELS /LINE /NOKEY /NOLABEL
/OVERLAY /PALETTE /SET_UP /TITLE /TRANPOSE /XLIMITS /YLIMITS

Produces a shaded (rectangular raster) plot of a 2-D field. By default a color key is drawn and
contour lines are not drawn.



COMMANDS REFERENCE    205

SHADE[/qualifiers]  expression

Parameters
The expression may be any valid expression. See Chapter 3, section “Expressions” for a
definition of valid expressions. The expression will be inferred from the current context if
omitted from the command line. Multiple expressions are not permitted in a single SHADE
command.

Command qualifiers for SHADE:

SHADE/I=/J=/K=/L=/X=/Y=/Z=/T=  
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

SHADE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

SHADE/FRAME
Causes the graphic image produced by the command to be captured as an animation frame in
the file specified by SET MOVIE.

SHADE/KEY
Displays a color key for the palette used in the shaded plot. By default a key is drawn unless
the /LINE or /NOKEY qualifier is specified.

SHADE/LEVELS
Specifies the SHADE levels or how the levels will be determined. If the /LEVELS qualifier is
omitted Ferret automatically selects reasonable SHADE levels.

See Chapter 6, section “Contouring” for examples and more documentation on /LEVELS and
color_thickness indices. See also the demonstration “custom_contour_demo.jnl”.

SHADE/LINE
Overlays contour lines on a shaded plot. When /LINE is specified the color key is omitted
unless specifically requested via /KEY.

SHADE/NOKEY
Suppresses the drawing of a color key for the palette used in the plot.

SHADE/NOLABELS
Suppresses all plot labels except axis labels.

SHADE/OVERLAY
Causes the indicated shaded plot to be overlaid on the existing plot.



206    COMMANDS REFERENCE

Note (SHADE/OVERLAY with time axes):
A restriction in PPLUS requires that if time is an axis of the shaded plot, the overlaid variable
must share the same time axis encoding as the base plot variable. If this condition is not met,
you may find that the overlaid shaded plot fails to be drawn. The solution is to use the Ferret
regridding capability to regrid the base plot variable and the overlaid plot variable onto the
same time axis.

SHADE/PALETTE=
Specifies a color palette (otherwise, a default rainbow palette is used). Try the Unix command
% Fpalette '*' to see available palettes. The file suffix *.spk is not necessary when
specifying a palette. See command PALETTE for more information.

yes? SHADE/PALETTE=land_sea  rose

The /PALETTE qualifier changes the current palette for the duration of the plotting command
and then restores the previous palette. This behavior is not immediately compatible with the
/SET_UP qualifier. See the PALETTE command for further discussion.

SHADE/SET_UP
Performs all the internal preparations required by program Ferret for a shaded plot but does not
actually render output. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL SHADE command. This permits plot customizations that are
not possible with Ferret command qualifiers. See Chapter 6.

SHADE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression(s). To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See  Chapter 6,
section “Fonts.”

yes? SHADE/TITLE="title string"  expression

SHADE/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is drawn
horizontally on the plot and the Y and Z axes are drawn vertically. For Y-Z plots the Z data axis
is vertical.

Note that plots in the YT and ZT planes have /TRANSFORM applied by default in order to
achieve a horizontal T axis. See /XLIMITS for further details. Use /TRANSPOSE manually
to reverse this effect.

SHADE/XLIMITS=
Specifies the X axis range and tic interval (otherwise, Ferret selects reasonable values).



COMMANDS REFERENCE    207

yes? SHADE/XLIMITS=lo:hi:increment

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

Note that the “X” in /XLIMITS refers to the horizontal axis of the plot rather than to the X axis
of the grid. This can lead to confusion, especially on plots in the YT or ZT plane.  Plots in these
planes are automatically transposed to place the Y or Z axis, respectively, on the vertical axis
of the plot. Plots may also be transposed manually with the /TRANSPOSE qualifier. On
transposed plots /XLIMITS will refer to the vertical axis of the plot.

SHADE/YLIMITS=
Specifies the Y axis range and tic interval. See /XLIMITS. 

28  SHOW
/ALL

Displays program states and stored values. 

Command qualifiers for SHOW:

SHOW/ALL
Executes all SHOW options. This command gives a complete description of the current state,
including information about region, grids, axes, variables, and the state of various modes
(default or set with SET MODE).

yes? SHOW/ALL

28.1  SHOW ALIAS

Lists all command aliases and the full command names for which they stand, or, with an
argument, shows a specified command alias.

yes? SHOW ALIAS  [alias_name]

28.2  SHOW AXIS
/ALL

Shows a basic description of the named axis.

SHOW AXIS[/ALL]   [axis_name]

A typical output appears below. The columns are:
name name of axis (used also in DEFINE AXIS and DEFINE GRID)
axis the orientation of the axis; “(-)” on a depth axis indicates increasing downward



208    COMMANDS REFERENCE

# pts number of points on axis; “r” or “i” for regular or irregular spacing, “m” if the axis
is “modulo” (repeating)

start position of first point on the axis
end position of last point on the axis

yes? SHOW AXIS/ALL
name       axis              # pts   start                end
PSXT      LONGITUDE          160 r   130.5E               70.5W
PSYT      LATITUDE           100 i   28.836S              48.568N
PSZT      DEPTH(-)            27 i   5m                   3824m
TIME      TIME                25 r   17-AUG-1982 12:00    10-JAN-1983
NMCX      LONGITUDE          180 r   20E                  18E
NMCY      LATITUDE            91 r   90S                  90N
TIME1     TIME                12mr   16-JAN-1901 05:00    16-DEC-1901

Command qualifiers for SHOW AXIS:

SHOW/ALL
Show a brief summary of all axes defined.

yes? SHOW AXIS/ALL

28.3  SHOW COMMANDS

Displays commands, subcommands, and qualifiers recognized by program Ferret. This
command does not display aliases; use SHOW ALIAS.

SHOW COMMAND    [command_name or partial_command]

Note: This is the most reliable way to view command qualifiers. The output of this command
will be current even when this manual is out of date.

Examples:

yes? SHOW COMMAND S ! show all commands beginning with "S"
yes? SHOW COMMAND ! show all commands
yes? SHOW COMMAND PLOT ! shows command PLOT and all its qualifiers

28.4  SHOW DATA_SET
/ALL /BRIEF /FILES /FULL /VARIABLE

Shows information about the data sets which have been SET and indicates the current default
data set. By default the variables and their subscript ranges are also listed.

yes? SHOW DATA[/qualifiers]   [set_name_or_number1,set2,...]



COMMANDS REFERENCE    209

If no data set name or number is specified then all SET data sets are shown.

Command qualifiers for SHOW  DATA_SET:

SHOW DATA/ALL
This qualifier has no effect on this command; it exists for compatibility reasons.

SHOW DATA/BRIEF
Shows only the names of the data sets; does not describe the data contained in them.

SHOW DATA/FILES
Displays the names of the data files for this data set and the ranges of time steps contained in
each. Output is formatted as date strings or as time step values depending on the state of MODE
CALENDAR.

SHOW DATA/FULL
Equivalent to /VARIABLES and /FILES used together.

SHOW DATA/VARIABLES
In addition to the information given by the SHOW DATA command with no qualifiers, this
query also provides the grid name and world coordinate limits for each variable in the data set.

Example: SHOW DATA

SHOW DATA produces a listing similar to the one below. The output begins with the
descriptor file name (for TMAP-formatted data) and data set title. The columns I, J, K, and L
give the subscript limits for each variable with respect to its defining grid (use SHOW
DATA/FULL and SHOW GRID variable_name for more information).

yes? SET DATA levitus_climatology
yes? SHOW DATA
     currently SET data sets:
    1> /home/e1/tmap/fer_dsets/descr/levitus_climatology.des  (default)
      name     title                I         J         K         L
      TEMP     TEMPERATURE         1:360     1:180     1:20      1:1
      SALT     SALINITY            1:360     1:180     1:20      1:1

28.5  SHOW EXPRESSION

Shows the current expression(s) implied or set with SET EXPRESSION. If not explicitly set
with this command, the default current context expression is the argument of the most recent
“action” command (PLOT, SHADE, CONTOUR, VECTOR, WIRE, etc.)  See Chapter 3,
section “Expressions” for an explanation and list of action commands. 

yes? SHOW EXPRESSION



210    COMMANDS REFERENCE

28.6  SHOW GRID
/I/J/K/L /X/Y/Z/T /ALL

Shows the name and axis limits of a grid.

yes? SHOW GRID[/qualifiers]   [var_or_grid1 var_or_grid2 ...]

Example:

(See command SHOW AXIS for an explanation of the columns.)

yes? SET DATA levitus_climatology
yes? SHOW GRID salt
    GRID GLEVITR1        
 name       axis           # pts   start                end
 XAXLEVITR LONGITUDE       360mr   20.5E                19.5E(379.5)  
 YAXLEVITR LATITUDE        180 r   89.5S                89.5N
 ZAXLEVITR DEPTH(-)         20 i   0m                   5000m

Parameters
The parameter(s) may be the name of one or more grid(s) or variable(s). If no parameter is
given SHOW GRID displays the grid of the last variable accessed. This is the only mechanism
to display the grid of an algebraic expression.

Note: To apply SHOW GRID to an algebraic expression it is necessary for Ferret to have
evaluated the expression in a previous command. The command LOAD is useful for this
purpose in some circumstances.

Command qualifiers for SHOW GRID:

SHOW GRID/I=/J=/K=/L=/X=/Y=/Z=/T=  
Displays the coordinates and grid box sizes for the specified axis. Optionally, low and high
limits and a delta value may be specified to restrict the range of values displayed.

yes? SHOW GRID/X[=lo:hi:delta] [variable_or_grid]

Example:

yes? SHOW GRID/L=1:12:3  sst[coads_climatology]

SHOW GRID/ALL
Shows the names only of all grids defined.

yes? SHOW GRID/ALL

28.7  SHOW LIST



COMMANDS REFERENCE    211

Shows the current states of the LIST command.

yes? SHOW LIST

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

28.8  SHOW MEMORY
/ALL/FREE/PERMANENT/TEMPORARY

Shows the state of the memory cache.

yes? SHOW MEMORY

Shows the current size of the cache.

yes? SHOW MEMORY[/qualifiers]

Command qualifiers for SHOW MEMORY:

SHOW MEMORY/ALL
Shows all variables currently cached in memory—permanent and temporary.

SHOW MEMORY/FREE
Shows cache memory and memory table space that remains unused.

Cache memory is organized into “blocks.” One block is the smallest unit that any variable
stored in memory may allocate. The total number of variables that may be stored in memory
cannot exceed the size of the memory table. The “largest free region” gives an indication of
memory fragmentation. A typical SHOW MEMORY/FREE output looks as below:

total memory table slots: 150
total memory blocks: 500
memory block size:1600

number of free memory blocks: 439
largest free region: 439
number of free regions:   1
free memory table slots: 149

SHOW MEMORY/PERMANENT
Lists the variables cached in memory and cataloged as permanent. These variables will not be
deleted even when memory space is needed. They become cataloged in memory as permanent
when the LOAD/PERMANENT command is used.

SHOW MEMORY/TEMPORARY



212    COMMANDS REFERENCE

Lists the variables cached in memory and cataloged as temporary (they may be deleted when
memory capacity is needed).

28.9  SHOW MODE

Shows the names, states and arguments of the Ferret SET MODE command.

SHOW MODE [partial_mode_name1,name2,...]

Example:

yes? SHOW MODE VERIFY,META

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

28.10  SHOW MOVIE

Shows the current state of SET MOVIE. This state affects FRAME and graphics commands
specified with the /FRAME qualifier.

yes? SHOW MOVIE

The qualifier /ALL can be used with this command, but it exists for compatibility purposes only
and has no effect.

28.10.1  SHOW QUERIES

Queries are a vehicle for communication between Ferret and a stand-alone interface program.
They are not supported for general use.

28.11  SHOW REGION

Shows the current default region or the named region.

yes? SHOW REGION[/ALL]  [region_name]

The region displayed is formatted appropriately for the axes of the last data accessed. For
example, suppose the region along the Y axis was specified as Y=5S:5N. Then if the Y axis of
the last data accessed is in units of degrees-latitude the Y location is shown as Y=5S:5N but if
the Y axis of the last data accessed is “ABSTRACT” then the Y location is shown as Y=-5:5.

28.12  SHOW TRANSFORM

Shows the available transformations, including regridding transformations.



COMMANDS REFERENCE    213

yes? SHOW TRANSFORM

Note: This is the most reliable way to view transformations. The output of this command will
be current even when this manual is out of date.

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

28.13  SHOW VARIABLES
/ALL /DIAGNOSTIC /USER

Lists diagnostic or user-defined variables.

SHOW VARIABLES[/qualifier]   [partial_name]

Examples:

yes? SHOW VARIABLES !all user-defined variables
yes? SHOW VAR/DIAG Q !all diagnostic vars beginning with Q

Command qualifiers for SHOW VARIABLES:

SHOW VARIABLES/ALL
Lists both diagnostic variables (available for the COX/PHILANDER model) and user-defined
variables.

SHOW VARIABLES/DIAGNOSTIC
This is an unsupported (obselete) qualifier. It lists “diagnostic” variables available for the
COX/PHILANDER model.

SHOW VARIABLES/USER
Lists expressions which have been defined by the user as new variables. This is the default
behavior of SHOW VARIABLES with no qualifier.

28.14  SHOW VIEWPORT

Shows one or more of the currently defined viewports. Omitting an argument gives information
on all viewports.

yes? SHOW VIEWPORT [view_name1,view_name2,...]

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.



214    COMMANDS REFERENCE

28.15  SHOW WINDOWS

Lists open window numbers and indicates which is the active one.

yes? SHOW WINDOWS

The qualifier /ALL may be used with this command but exists merely for compatibility reasons
and has no effect.

29  SPAWN

Executes a command line (Unix shell) command from within Ferret.

yes? SPAWN unix_shell_command

Example:

yes? SPAWN rm -f file.dat

Also, “SPAWN shell_name” allows the user to fork into an interactive shell. For example:

 yes? SPAWN csh

enters the user into a c-shell. Use EXIT to return to Ferret.

30  STATISTICS
/I/J/K/L X/Y/Z/T /D /BRIEF

Computes summary statistics about the data specified.

yes? STATISTICS[/qualifiers]    expression_1 , expression_2 , ...

The statistics include:
• the size and shape of the region
• total number of data values in the region specified
• number of data values flagged as bad data
• minimum value
• maximum value
• mean value (arithmetic mean—not weighted by grid spacing)
• standard deviation (also not weighted by grid spacing)

All values are reported to 5 significant digits.



COMMANDS REFERENCE    215

STATISTICS interacts with the current context exactly as the commands CONTOUR, PLOT
and LIST do.

Parameters
Expressions may be anything described under Expressions. If multiple variables or expressions
are specified they are treated in sequence. The expression(s) are inferred from the current
context if omitted from the command line.

Command qualifiers for STATISTICS:

STATISTICS/I=/J=/K=/L=/X=/Y=/Z=/T=  
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when computing statistics about the expression(s). 

STATISTICS/D=
Specifies the default data set to be used when computing statistics about the expression(s).

STATISTICS/BRIEF
Produces a shorter listing involving less computation.

31  UNALIAS

Alias for CANCEL ALIAS. 

32  USE

The USE command is an alias for SET DATA/FORMAT=cdf.

All qualifiers and restrictions are identical to SET DATA/FORMAT=cdf. If no filename
extension is given, “.cdf” is assumed.

Example:

yes? USE test

is equivalent to
yes? SET DATA/FORMAT=cdf test



216    COMMANDS REFERENCE

33  USER

Executes a user-written extension to the Ferret program.

yes? USER[/COMMAND=]    expression_1 , expression_2, ...

The USER command is a means of incorporating custom changes in Ferret. It is currently
supported only by special request to the Ferret developers (ferret@pmel.noaa.gov). Two special
features are currently accessible through the USER command—objective analysis and scattered
sampling of grids. These commands will eventually be replaced by more thoroughly integrated
features with the same functionality.

We recommend the user access objective analysis via the script objective.jnl. The scattered
sampling feature is used in the polar plotting GO tools (try “GO polar_demo” at the Ferret
prompt).

33.1  Objective analysis

The command selection “objective” grids the (X, Y, value) triples onto a grid of specified
resolution using objective analysis techniques exactly as available in PLOTPLUS.

yes? USER/COMMAND="objective"/OPT1=/FILE=/FORMAT=  xpts, ypts, vals

/OPT1=xlo:xhi:xdel,ylo:yhi:ydel,[cay],[rng]
OPT1 specifies a grid that is xlo:xhi:xdel in X and ylo:yhi:ydel in Y. The parameters “cay”
and “rng” are interpreted as in the PPLUS CONSET command (“rng” is called “nrng” in
CONSET) :
cay = is the interpolation scheme. default=5.0

cay=0.0  Laplacian interpolation is used. The resulting surface tends to have rather sharp
peaks and dips at the data points. There is no chance of spurious peaks appearing. 

cay > 0. As CAY is increased, spline interpolation predominates over the Laplacian, and
the surface passes through the data points more smoothly. The possibility of spurious
peaks increases with CAY. 

cay= infinity. This is pure spline interpolation. An over-relaxation process in used to
perform the interpolation. 

rng = Grid points farther than RNG away from the nearest data point will be set to
“undefined” (1.0E35).  default=5

/FILE=filename
Specifies the name of the output file, to which the gridded data is directed.

/FORMAT=format
The format may be a FORTRAN format (in parentheses). If specified, each FORTRAN
WRITE will output nx points (one row of the output grid). If unspecified, the format will
be binary floating point written one value per (FORTRAN) variable-length record. 



COMMANDS REFERENCE    217

 
See objective_analysis_demo.jnl which uses objective.jnl (type “GO objective_analysis_demo”
at the Ferret prompt).

33.2  Scattered sampling

The command selection “sample” uses multi-linear interpolation to sample a gridded field of
data at a list of scattered coordinates. This procedure is useful in statistics, in experimental
design studies, and in advective tracer animations. The variable “four_dee_field” is a 1 to 4
dimensional gridded field of values. The variables xpts, ypts, zpts, and tpts are the
ordered-tuples of points at which the field should be sampled. To indicate that a particular axis
is not to be involved in the sampling process, pass a missing value flag (“1/0") for that axis. For
example, 

yes? USER/COMMAND="sample"  temp[d=levitus_climatology,K=1], \
xpts, ypts, 1/0, 1/0

will sample (X,Y) points from the K=1 field of Levitus climatological temperatures.
Multi-linear interpolation is used to interpolate  between grid points.

yes? USER/COMM="sample"/OPT1=/OPT2=/FILE=/FORMAT= \
four_dee_field, xpts, ypts, zpts, tpts

/OPT1=coaching
The parameter “coaching” may contain these substrings:
“hole” or “fill” To perform the linear interpolation of all of the grid points

surrounding the requested sample, tuple must contain valid data.  If
“fill” is specified then Ferret attempts to fill any missing surrounding
points with an average of their neighbors. If “hole” (the default) then
the result is “missing” whenever a neighboring point is missing.

                      
“standard_bad” indicating that the standard Ferret bad value flag of -1E34 is used for

missing data points (default is the missing data flag from
“four_dee_field”.

/OPT2=coordinates_or_indices
The parameter “coordinates_or_indices” determines if the input sampling points are to be
interpreted as world coordinates or as subscripts. If it is “c” (default) the input points are
world coordinates. If “i”, they are indices. Indices may be fractional locations (e.g., 2.5 is
midway between 2 and 3). By specifying a 4-character “coordinates_or_indices” each axis
may be separately specified. (e.g., /OPT2="ccci" will interpret T axis positions, only, as
indices).

/FILE=filename
Specifies the name of an output file to which sampled data will be written.



218    COMMANDS REFERENCE

/FORMAT=format
The format may contain a FORTRAN format in parentheses or “unf” (default) to indicate
unformatted, binary, floating point output. A special, condensed (high performance) format
option is possible by specifying “unf:nnn”. In this case only the sampled values are written
(no coordinates or codes) and nnn specifies the number of values to be written per record
(e.g., “unf:100").

By default each output record consists of:

value  xcoord  ycoord  zcoord  tcoord  code

where “code” is 
0 fully successful
1 successful via hole filling
-1...-4 failed due to beyond input data limits on axis -code
-9 failed due to hole in input data field
-99 failed due to hole in input coordinate

 
See polar_demo.jnl which uses convert_to_polar_2d.jnl which uses USER/COMMAND=
SAMPLE.

34  VECTOR
/I/J/K/L /X/Y/Z/T /D /ASPECT /FRAME /LENGTH /NOLABEL /OVERLAY /PEN
/SET_UP /TITLE /TRANPOSE /XLIMITS /XSKIP /YLIMITS /YSKIP

Produces a vector arrow plot.

VECTOR[/qualifiers] x_expr,y_expr 

Parameters
x_expr, y_expr
Algebraic expressions (or simple variables) specifying the x components and y components of
the vector arrows. The expression pair will be inferred from the current context if omitted from
the command line.

Command qualifiers for VECTOR:

VECTOR/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

VECTOR/D=
Specifies the default data set to be used when evaluating the expression pair being plotted.



COMMANDS REFERENCE    219

VECTOR/ASPECT
Adjusts the direction of the vectors to compensate for differing axis scaling. 

yes? VECTOR/ASPECT[=aspect_ratio]  x_expr, y_expr...

The size of vectors is unchanged—only the direction is modified. Under most circumstances
/ASPECT should be specified. The aspect ratio is (Y-scale/X-scale). Under normal
circumstances no aspect ratio is specified by the user—Ferret will compute the correct ratio.
If the plot lies in the latitude/longitude plane the aspect ratio correction will be adjusted as a
function of COS(LATITUDE) on the plot.

For example, in a typical oceanographic XZ plane plot the vertical (Z) axis is in tens of meters
while the horizontal (X) axis is in hundreds of kilometers. This means the vertical scale is
greatly magnified in comparison to the horizontal. The /ASPECT qualifier  correspondingly
magnifies the vertical component of the vector relative to the horizontal while preserving the
length of the vector. The magnification factor is documented on the plot.

VECTOR/FRAME
Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE.

VECTOR/LENGTH=
Controls the size of vectors.

yes? VECTOR/LENGTH[=value_of_standard]

If the /LENGTH qualifier is omitted Ferret automatically selects reasonable vector lengths. To
reuse the vector length from the last VECTOR plot use VECTOR/LENGTH.

To specify the vector lengths manually use the value_of_standard argument. This associates the
value “val” with the standard vector length, normally 1/2 inch. Note that the PPLUS command
VECSET can be used to modify the length of the standard vector. This is also the length that
is displayed in the vector key.

Example: 

yes? VECTOR/LENGTH=100 U,V

Creates a vector arrow plot of velocities with 1/2 inch vectors for speeds of 100.

VECTOR/NOLABELS
Suppresses all plot labels except axis labels.

VECTOR/OVERLAY
Causes the indicated vector field to be overlaid on the existing plot.



220    COMMANDS REFERENCE

VECTOR/PEN=
Specifies the line style for the vectors. /PEN= takes the same arguments the /LINE= qualifier
for command PLOT. See command PLOT/LINE=. “n” ranges from 1 to 18.

yes? VECTOR/PEN=n   x_expr, y_expr

VECTOR/SET_UP
Performs all the internal preparations required by program Ferret for vector plots but does not
actually render output. The command PPL can then be used to make changes to the plot prior
to producing output with the PPL VECTOR command. This permits plot customizations that
are not possible with Ferret command qualifiers. See Chapter 6.

VECTOR/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about x_expr and y_expr. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See  Chapter 6,
section “Fonts”.

yes? VECTOR/TITLE="title_string"  x_expr, y_expr

VECTOR/TRANSPOSE
Causes the horizontal and vertical axes to be interchanged. By default the X axis is always
drawn horizontal and the Y and Z axes are drawn vertical. For Y-Z plots the Z data axis is
vertical.

VECTOR/XLIMITS=
Specifies X axis limits and tic interval. Without this qualifier, Ferret selects reasonable values.

yes? VECTOR/XLIMITS=lo:hi:increment   x_expr, y_expr

The optional “increment” parameter determines tic mark spacing on the axis. If the increment
is negative, the axis will be reversed.

VECTOR/XSKIP=/YSKIP=
Draws every nth vector along the requested axis beginning with the first vector requested.

yes? VECTOR/XSKIP=nx/YSKIP=ny  u,v

By default, Ferret “thins” vectors to achieve a clear plot. These qualifiers allow control over
thinning. 

Note that when the /SETUP qualifier is used the /XSKIP and /YSKIP qualifiers are ignored.
In this case, use arguments to the PPL VECTOR command to achieve the thinning. 



COMMANDS REFERENCE    221

PPL VECTOR xskip yskip

VECTOR/YLIMITS=
Specifies Y axis limits and tic interval. See /XLIMITS=.

35  WIRE
/I/J/K/L /X/Y/Z/T /D /FRAME /NOLABEL /OVERLAY
/SET_UP /TITLE /TRANPOSE /VIEWPOINT /ZLIMITS /ZSCALE

Produces a wire frame representation of a two-dimensional field.

yes? WIRE[/qualifiers] expression

Parameters
The expression may be anything described in Chapter 3, section “Expressions.” The expression
will be inferred from the current context if omitted from the command line. Multiple
expressions are not permitted in a single WIRE command. The indicated region should denote
a plane (2D) of data.

Command qualifiers for WIRE:

WIRE/I=/J=/K=/L=/X=/Y=/Z=/T=
Specifies value or range of axis subscripts (I, J, K, or L), or axis coordinates (X, Y, Z, or T) to
be used when evaluating the expression being plotted.

Example:

The following commands will create a wire frame representation of a simple mathematical
function in two dimensions.

yes? SET REGION/I=1:80/J=1:80
yes? WIRE/VIEWPOINT=-4,-10,2 exp(-1*(((I-40)/20)^2 + ((J-40)/20)^2))

WIRE/D=
Specifies the default data set to be used when evaluating the expression being plotted.

WIRE/FRAME
Causes the graphic image produced to be captured as an animation frame in the file specified
by SET MOVIE.

WIRE/NOLABEL
Suppresses all plot labels except axis labels.



222    COMMANDS REFERENCE

WIRE/OVERLAY
Causes the indicated wire frame plot to be overlaid on the existing plot.

WIRE/SET_UP
Performs all the internal preparations required by program Ferret for wire frame graphics but
does not actually render output. The command PPL can then be used to make changes to the
plot prior to producing output with the PPL WIRE command. This permits plot customizations
that are not possible with Ferret command qualifiers. See Chapter 6.

WIRE/TITLE=
Allows user to specify a plot title (enclosed in quotation marks). Without this qualifier Ferret
selects a title based on information about the expression. To include font change and
color_thickness specifications (e.g., @TI@C002) in the title string, it is necessary either to
CANCEL MODE ASCII or to include a leading ESC (escape) character. See Chapter 6, section
“Fonts.”

WIRE/TRANSPOSE
Causes the X and Y axes to be interchanged.

WIRE/VIEWPOINT=
Specifies a viewpoint for viewing the wire frame. 

yes? WIRE/VIEWPOINT=x,y,z   expression

The x,y values are specified as coordinates on the X and Y axes (though they may exceed the
axis limits). The z value is in units of the requested variable.

WIRE/ZLIMITS=
Specifies limits of Z axis for wire frame. 

yes? WIRE/ZLIMITS=zmin,zmax,delta   expression

The values given are in units of the requested variable. (The string given as an argument to
/ZLIMITS= is passed unmodified to the PPLUS command WIRE as the zmin and zmax
parameters.)

WIRE/ZSCALE=
Controls Z axis scaling of the 3-D plot.

yes? WIRE/ZSCALE=s  expression

The default value is equivalent to (ymax-ymin)/(zmax-zmin)  (i.e., the aspect ratio of the Z axis
to the Y axis). This qualifier is identical to the PPLUS VIEW command parameter of the same
name. 



223

GLOSSARY

ABSTRACT EXPRESSION (or VARIABLE)
An expression which contains no dependencies on any disk-resident data is
referred to as “abstract”. For example, SIN(x), where x is a pseudo-variable.

AXIS
A line along one of the dimensions of a grid. The line is divided into n points, or
more precisely, n grid boxes where each grid box is a length along the axis.
Adjacent grid boxes must touch (no gaps along the axis) but need not be uniform
in size (points may be unequally spaced). Axes may be oriented (e.g. latitude,
depth, ...) or simply abstract values.

COARDS
A profile for the standardization of NetCDF files.

CONTEXT
The information needed to obtain values for a variable: the location in space and
time (points or ranges), the name of the data set (if a file variable) and an optional
grid.

DATA SET
A collection of variables in one or more disk files that may be specified with a single
SET DATA command.

DESCRIPTOR
A file containing background data about a GT or TS-formatted data set: variable
names, coordinates, units and pointers to the data files. Descriptor file names
normally end with “.DES”. 

DYNAMIC AXIS
An axis that is inferred through the use of lo:hi:delta notation. It is created and
destroyed dynamically by Ferret.

DYNAMIC GRID
A grid whose axes are inferred from a regridding operation that does not explicitly
specify all of the destination axes or specifies a destination grid that can be
rendered conformable with the originating grid only if some axes are removed or
substituted.



224

EXPRESSION
Any valid combination of operators, functions, transformations, variables and
pseudo-variables is an expression. For example, “ABS(U)”, “TEMP/(-0.03^Z)” or
“COS(TEMP[Y=0:40N@LOC:15])”.

EZ DATA SET
Any disk data file that is readable by Ferret but is not in GT, TS or NetCDF format.

FILE VARIABLE
A variable made available with the SET DATA command. File variables are data
in disk files suitable for plotting, listing, using in user-variable definitions, etc.

GKS
The “Graphical Kernel System” - a graphics programming interface that facilitates
the development of device-independent graphics code.

GO FILE  or  GO SCRIPT
A file of Ferret commands intended to be executed as a single command with the
GO command.

GRID
A group of 1 to 4 axes defining a coordinate space. A grid can associate the axes as
“outer products” creating a rectangular array of points. Grids may be defined with
the DEFINE GRID command or from inside data sets.

GRID BOX
A length along an axis assumed to belong to a single grid point. It is represented by
a box “middle”, a box upper and a box lower limit. The “middle” need not actually
be at the center of the box but the upper limit of box m must always be the lower
limit of box m+1. (This concept is needed for integration of variables along an axis.)

GRID FILE
A file containing the definition of grids and axes - part of the GT and TS formats.

GT FORMAT
“grids at time steps” format. A direct access format using a separate descriptor file
for descriptive metadata.

METAFILE
A representation of graphics stored in a computer file. Such a file can be processed
by an interpreter program (such as Fprint) and sent to a graphics output device.



225

MODULO AXIS
An axis where the first point of the axis logically follows the last. Examples of this
are degrees of longitude or dates in a climatological year.

MODULO REGRIDDING
A regridding operation where the destination axis is modulo and the regridding
transform is a modulo operation. Typical usage would be to create a 12-month
climatology from a multi-year time series.

NETCDF
Network Common Data Format is an interface to a library of data access routines
for storing and retrieving scientific data. NetCDF allows the creation of data sets
which are self-describing and network transparent. As of Ferret version 2.30,
NetCDF is the suggested method of data storage.

OPERATOR
A function that is syntactically expressed in-line instead of as a name followed by
arguments. The Ferret operators are  +, -, *, /, ^, AND, OR, EQ, NE, LT, LE, GT and
GE.

PSEUDO-VARIABLE
A special variable whose values are coordinates or coordinate information about a
grid. X, I and XBOX are the pseudo-variables for the X axis - similarly for the other
axes.

QUALIFIER
Commands and variable names may require auxiliary information supplied by
qualifiers. In the command “SHOW DATA/FULL," "/FULL” is a qualifier. In the
variable “SST[Y=20N],” “Y=20N” is a qualifier.

REGION
The location in space and time (or other axis units) at which a variable is to be
evaluated. The locations may be points or ranges. For example, T="1-JAN-
1982",Y=12S:12N describes a region in latitude and time.

REGRID
The process of converting the values of a variable from one grid to another. By
default this is done through multi-linear interpolation along all axes from the old
grid to the new. Other methods are also supported.



226

SUBSCRIPT
A coordinate system for referring to grid locations in which the points along an axis
are regarded as integers from 1 to the number of points on the axis. The qualifiers
I, J, K and L are provided to specify locations by subscript.

TRANSFORMATION
An operation performed on a variable along a particular axis and specified via the
syntax “@trn”. Some transformations, such as averaging (e.g. U[Z=@AVE]), reduce
the range of the variable along the axis to a single point. Others, such as taking a
derivative (e.g. V[T=@DDC]) do not.

TMAP-FORMAT
Special formats created by the Thermal Modeling and Analysis Project (TMAP).
These formats use descriptor files to store information about the variables, units,
titles and grids for the data. Separate formats allow optimized access as time series
(TS format) or as geographical regions (GT format). As of Ferret version 2.30,
NetCDF is the suggested method of data storage.

TS FORMAT
“time step” format. A direct access format using a separate descriptor file for
descriptive metadata.

USER-DEFINED VARIABLE
A variable created with DEFINE VARIABLE (alias LET).

VARIABLE
Value defined on a grid.

VARIABLE NAME
The name by which a variable will be indicated in commands and expressions.
Names begin with letters and may include letters, digits, dollar signs and
underscores.

VARIABLE TITLE
A title string used to label plots and listed outputs of a variable.

VIEWPORT
A graphical display region which may be any subrectangle of a window. Graphical
commands (PLOT, CONTOUR, etc.) take complete control of a viewport, clearing
it as needed. A window may contain several viewports - possibly overlapping.
Viewports are defined with DEFINE VIEWPORT and controlled with SET and
CANCEL VIEWPORT. 



227

WINDOW
A rectangular graphical display region. On a graphics terminal the terminal screen
is the one and only window available. On a graphics workstation there may be
many output windows.

WORLD COORDINATE
A coordinate system for referring to grid locations in which the points along an axis
are regarded as continuous values in some particular units (e.g. meters of depth,
degrees of latitude). The qualifiers X,Y,Z and T are provided to specify locations by
world coordinate.



228



229

INDEX (add 10 to page no. for PDF viewer)

*  . . . . . . . . . . . . . . . . . . . . . . . . . . . 14, 116
@ . . . . . . . . . . . . . . . . . . . . . . . . . 43, 68, 79

region specifier . . . . . . . . . . . . . 79
transformations . . . . . . . . . . . . . 43

@DDB transformation ALIAS . . . . . 151, 158, 167, 182, 207, 215
backward derivative . . . . . . . . .   51

@DDC transformation FRAME . . . . . . . . . . . . . . . . . . 167
centered derivative . . . . . . . . . .   50

@DDF transformation viewing . . . . . . . . . . . . . . . . . . 84
forward derivative. . . . . . . . . . . 50

@DIN transformation arrow
definite integral . . . . . . . . . . . . . 46

@FAV transformation ASCII data
averaging filler  . . . . . . . . . . . . . 52

@FLN transformation output . . . . . . . . . . . . . . . . . . . 174
linear interpolation filler . . . . . . 52

@LOC transformation ready . . . . . . . . . . . . . . . . . . . . 26
location of . . . . . . . . . . . . . . . . . . 52

@MIN transformation association . . . . . . . . . . . . . . . . . . . . . 70
minimum value . . . . . . . . . . . . . .48

@SBN transformation NetCDF attributes . . . . . . . . . 130
binomial smoother. . . . . . . . . . . 49

@SBX transformation average
boxcar smoother. . . . . . . . . . . . . 49

@SHF transformation transformation @AVE . . . . . . 48
shift data . . . . . . . . . . . . . . . . . . . 49

@SPZ transformation @AVE . . . . . . . . . . . . . . . . . . . 48
Parzen smoother. . . . . . . . . . . . . 50

@SUM transformation @FAV transformation . . . . . . 52
unweighted sum. . . . . . . . . . . . . 51

@SWL transformation /DEFINE . . . . . . . . . . . . . . . . . 63
Welch smoother. . . . . . . . . . . . . . 50

@VAR transformation DEFINE . . . . . . . . . . . . . . . . . . 159
weighted variance . . . . . . . . . . . 48

@WEQ transformation Ferret controls . . . . . . . . . . . . . 91
weighted equal. . . . . . . . . . . . . . 53

3-D limits . . . . . . . . . . . . . . . . . . . . 91
WIRE . . . . . . . . . . . . . . . . . . . . . . 221

abstract expression . . . . . . . . . . . . . . 2, 223
abstract variable . . . . . . . . . . . . . . . . . 5, 35

account
setting up an account . . . . . . . 119

action command . . . . . . . . . . . . . . . . . 38
algebraic expression . . . . . . . . . . . . 6, 38

animations . . . . . . . . . . . . . . . . . . . . . 83

SET MOVIE . . . . . . . . . . . . . . . 199

arguments (script) . . . . . . . . . . . . . . . 13

text labels . . . . . . . . . . . . . . . . 98

accessing . . . . . . . . . . . . . . . . . 26

reading . . . . . . . . . . . . . . . . . . 27

SET DATA/EZ . . . . . . . . . . . . 186

attributes

NetCDF global attributes . . . 132

regridding @AVE . . . . . . . . . . 70

average transformation

averaging filler

axis . . . . . . . . . . . . . . . . . . . . . . 2, 91, 223

CANCEL . . . . . . . . . . . . . . . . . 151

dynamic . . . . . . . . . . . . . . . 67, 223

label . . . . . . . . . . . . . . . . . . . . . 96

modulo . . . . . . . . . . . . . . . . . . 80
NetCDF axis definitions . . . . 131
PPLUS commands . . . . . . . . . 92



230

reversed . . . . . . . . . . . . . . . . . . . 140
SET modulo . . . . . . . . . . . . . . . . 184
transformation . . . . . . . . . . . . . . 43

backward derivative CANCEL VARIABLE . . . . . . . . . . . . 154
@DDB transformation . . . . . . . . 51

bar charts . . . . . . . . . . . . . . . . . . . . . . . . 10
batch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
binary /ALL . . . . . . . . . . . . . . . . . . . . 155

record structure . . . . . . . . . . . . . 24
binary data advanced usage . . . . . . . . . . . 137

output . . . . . . . . . . . . . . . . . . . . . 174
reading . . . . . . . . . . . . . . . . . . . . 27
record structure . . . . . . . . . . . . . 185
SET DATA/EZ . . . . . . . . . . . . . . 186

binomial smoother climatology . . . . . . . . . . . . . . . . . . 72, 140
@SBN transformation . . . . . . . . 49

bold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
boxcar smoother contouring . . . . . . . . . . . . . . . . 108

@SBX transformation . . . . . . . . . 49
calendar . . . . . . . . . . . 42, 78, 140, 160, 193
CANCEL . . . . . . . . . . . . . . . . . . . . . . . . 151

/ALL . . . . . . . . . . . . . . . . . . . . . . 152
CANCEL ALIAS . . . . . . . . . . . . . . . . . . 151
CANCEL AXIS . . . . . . . . . . . . . . . . . . . 151
CANCEL DATA palette . 11, 18, 101, 157, 177, 206

/ALL . . . . . . . . . . . . . . . . . . . . . . 152
CANCEL DATA_SET . . . . . . . . . . . . . . 151
CANCEL EXPRESSION . . . . . . . . . . . . 152
CANCEL LIST . . . . . . . . . . . . . . . . . . . . 152

/ALL . . . . . . . . . . . . . . . . . . . . . . 152
/APPEND . . . . . . . . . . . . . . . . . 152
/FILE . . . . . . . . . . . . . . . . . . . . . 152
/FORMAT . . . . . . . . . . . . . . . . . 152
/HEAD . . . . . . . . . . . . . . . . . . . . 152
/PRECISION . . . . . . . . . . . . . . . 153

CANCEL MEMORY . . . . . . . . . . . . . . . 153
/ALL . . . . . . . . . . . . . . . . . . . . . . 153
/PERMANENT . . . . . . . . . . . . . 153
/TEMPORARY . . . . . . . . . . . . . 153

CANCEL MODE . . . . . . . . . . . . . . . . . . 153
CANCEL MOVIE . . . . . . . . . . . . . . . . . 154

/ALL . . . . . . . . . . . . . . . . . . . . . . 154
CANCEL REGION . . . . . . . . . . . . . . . . 154

/ALL . . . . . . . . . . . . . . . . . . . . 154
/I/J/K/L . . . . . . . . . . . . . . . . 154
/X/Y/Z/T . . . . . . . . . . . . . . . 154

/ALL . . . . . . . . . . . . . . . . . . . . 154
CANCEL VIEWPORT . . . . . . . . . . . . 155
CANCEL WINDOW . . . . . . . . . . . . . 155

CDL file . . . . . . . . . . . . . . . . . . . 129, 130

sample . . . . . . . . . . . . . . . . . . . 141
using . . . . . . . . . . . . . . . . . . . . 133

child_axis
NetCDF . . . . . . . . . . . . . . . . . . 138

COARDS . . . . . . . . . . . . . . . . . . . 127, 223
color . . . . . . . . . . . . . . . . . . . . . . . . . . 98

custom control . . . . . . . . . 99, 102
Ferret controls . . . . . . . . . . 99, 101
GO tools . . . . . . . . . . . . . . . . . 11
hard copy . . . . . . . . . . . . . . . . 124
in HDF movie . . . . . . . . . . . . . 85
lines . . . . . . . . . . . . . . . . . . 99, 179

PPLUS commands . . . . . . 99, 102
text . . . . . . . . . . . . . . . . . . . . . . 99

color_thickness index . . . . . 99, 109, 157
command

abbreviated syntax . . . . . . . . . . 8
Commands Reference . . . . . . 151
executing a Unix command . . 214
list of common commands . . . 7
SHOW . . . . . . . . . . . . . . . . . . . 208
syntax . . . . . . . . . . . . . . . . . . . . 8

command line
Unix . . . . . . . . . . . . . . . . . . . . . . 3

command line (Unix) . . . . . . . . . . . . . 214
conformability . . . . . . . . . . . . . . . . 39, 59
context . . . . . . . . . . . . . . . . . . . . . . . . . 223
continent

filled masses . . . . . . . . . . . . . . 10
outlines . . . . . . . . . . . . . . . . . . 10



231

CONTOUR . . . . . . . . . . . . . . . . . . . . . . . 155
/D . . . . . . . . . . . . . . . . . . . . . . . . 156
/FILL . . . . . . . . . . . . . . . . . . . . . 156
/FRAME . . . . . . . . . . . . . . . . . . . 156
/I /J /K /L . . . . . . . . . . . . . . . . . 155
/KEY . . . . . . . . . . . . . . . . . . . . . . 156
/LEVELS . . . . . . . . . . . . . . . . . . 156
/LINE . . . . . . . . . . . . . . . . . . . . . 156
/NOKEY . . . . . . . . . . . . . . . . . . . 156
/NOLABELS . . . . . . . . . . . . . . . 156
/OVERLAY . . . . . . . . . . . . . . . . 156
/PALETTE . . . . . . . . . . . . . . . . . 157
/PEN . . . . . . . . . . . . . . . . . . . . . . 157
/SET_UP . . . . . . . . . . . . . . . . . . . 157
/TITLE . . . . . . . . . . . . . . . . . . . . 157
/TRANSPOSE . . . . . . . . . . . . . . 157
/X/Y/Z/T . . . . . . . . . . . . . . . . . 155
/XLIMITS . . . . . . . . . . . . . . . . . . 158
/YLIMITS . . . . . . . . . . . . . . . . . . 158
extrema . . . . . . . . . . . . . . . . . . . . 11

contouring . . . . . . . . . . . . . . . . . . . 108, 110
CONTOUR . . . . . . . . . . . . . . . . . 155

coordinates /FILE . . . . . . . . . . . . . . . . . . . . 162
interpolation . . . . . . . . . . . . . . . . 195
SHOW GRID /W/Y/Z/T . . . . . 210
spacing, NetCDF . . . . . . . . . . . . 139
underlying grid . . . . . . . . . . . . . 63
world . . . . . . . . . . . . . . . . . . . . . . . 2

COSINE (latitude) . . . . . . . . . . . . . . . . . 44
curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
data /X/Y/Z/T . . . . . . . . . . . . . . . 163

ASCII . . . . . . . . . . . . . . . . . . . . . . . 4
CANCEL DATA_SET . . . . . . . . 151
data set . . . . . . . . . . . . . . . . . . . . 21
NetCDF . . . . . . . . . . . . . . . . . . . . 22
SET DATA_SET . . . . . . . . . . . . . 184
SHOW SET . . . . . . . . . . . . . . . . . 208
STATISTICS . . . . . . . . . . . . . . . . 214
TMAP-formatted . . . . . . . . . . . . 23

data set . . . . . . . . . . . . . . . . . . . . . 2, 21, 223
examples . . . . . . . . . . . . . . . . . . . 16
EZ . . . . . . . . . . . . . . . . . . . . . . . . 224
locating . . . . . . . . . . . . . . . . . . . . 17

NetCDF . . . . . . . . . . . . . . . . . . 127
save and restore . . . . . . . . . . . 12

DDB transformation
backward derivmation . . . . . 51

DDC transformation
centered . . . . . . . . . . . . . . . . . . 50

DDF transformation
forward derivaation . . . . . . . . 50

debugging . . . . . . . . . . . 16, 62, 194, 195
DEFINE . . . . . . . . . . . . . . . . . . . . . . . . 158
DEFINE ALIAS . . . . . . . . . . . . . . . . . 158
DEFINE AXIS . . . . . . . . . . . . . . . . . . . 158

/DEPTH . . . . . . . . . . . . . . . . . 159
/FILE . . . . . . . . . . . . . . . . . . . . 160
/FROM_DATA . . . . . . . . . . . . 160
/MODULO . . . . . . . . . . . . . . . 160
/NAME . . . . . . . . . . . . . . . . . . 160
/NPOINTS . . . . . . . . . . . . . . . 160
/T0 . . . . . . . . . . . . . . . . . . . . . . 160
/UNITS . . . . . . . . . . . . . . . . . . 161
/X/Y/Z/T . . . . . . . . . . . . . . . 159

DEFINE GRID . . . . . . . . . . . . . . . . . . 161

/LIKE . . . . . . . . . . . . . . . . . . . 162
/X/Y/Z/T . . . . . . . . . . . . . . . 161

DEFINE REGION . . . . . . . . . . . . . . . 163
/DEFAULT . . . . . . . . . . . . . . . 163
/DI/DJ/DK/DL . . . . . . . . . . 163
/DX/DY/DZ/DT . . . . . . . . . 163
/I/J/K/L . . . . . . . . . . . . . . . . 163

DEFINE VARIABLE . . . . . . . . . . . . . 164
/D . . . . . . . . . . . . . . . . . . . . . . 164
/QUIET . . . . . . . . . . . . . . . . . . 164
/TITLE . . . . . . . . . . . . . . . . . . 165
/UNITS . . . . . . . . . . . . . . . . . . 165

DEFINE VIEWPORT . . . . . . . . . . . . . 165
/CLIP . . . . . . . . . . . . . . . . . . . 165
/ORIGIN . . . . . . . . . . . . . . . . . 165
/SIZE . . . . . . . . . . . . . . . . . . . . 165
/TEXT . . . . . . . . . . . . . . . . . . . 166
/XLIMITS . . . . . . . . . . . . . . . . 166
/YLIMITS . . . . . . . . . . . . . . . . 166



232

definite integral expression . . . . . . . . . . . . . . . . . 2, 38, 224
@DIN transformation . . . . . . . . 46

delta . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
demonstrations . . . . . . . . . . . . . . . . . . . . 8
density . . . . . . . . . . . . . . . . . . . . . . . . . . 42
depth . . . . . . . . . . . . . . . . . 11, 78, 159, 193

DEFINE AXIS/DEPTH . . . . . . . 159
derivative . . . . . . . . . . . . . . . . . . . . . . 50, 51

transformations . . . . . . . . . . . . . 43
descriptor . . . . . . . . . . . . . . . . . . . . . 23, 223

locating . . . . . . . . . . . . . . . . . . . . 120
TMAP data set . . . . . . . . . . . . . . 23

digits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
dimensions Fdescr . . . . . . . . . . . . . . . . . . . . . . . . . 17

multi-dimensional expression . 39
NetCDF . . . . . . . . . . . . . . . . . . . . 130

DIN transformation FER_DESCR . . . . . . . . . . . . . . . . . . . . 120
definite integ . . . . . . . . . . . . . . . 46

divergence . . . . . . . . . . . . . . . . . . . . . . . 50
dynamic axis . . . . . . . . . . . . . . . . . . . . . 223
dynamic grid . . . . . . . . . . . . . . . . . . . . . 223
dynamic height . . . . . . . . . . . . . . . . . . . 10
e-mail . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
ECHO . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
ELIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
ELSE Fhelp . . . . . . . . . . . . . . . . . . . . . . . . . . 18

conditional execution . . . . . . . . 166
masking . . . . . . . . . . . . . . . . . . . 56

embedded expression . . . . . . . . . . . 57, 114
ENDIF . . . . . . . . . . . . . . . . . . . . . . . . . . 166
environment filler (missing value) . . . . . . . . . . . . . 52

computing environment . . 113, 119
environment variables . . . . . 18, 120
setting up an account . . . . . . . . . 119

environment variable . . . . . . . . . . . . . . 120
errors linear interpolransformation . 52

generating messages . . . . . . 14, 116
MODE IGNORE_ERROR . . . . . 195

EXIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
/COMMAND_FILE . . . . . . . . . 167
QUIT . . . . . . . . . . . . . . . . . . . . . . 167

experimental design format
scattered sampling . . . . . . . . . . . 217

algebraic . . . . . . . . . . . . . . . . . . 6
CANCEL . . . . . . . . . . . . . . . . . 152
embedded . . . . . . . . . . . . . . . . 57
MODE POLISH . . . . . . . . . . . 197
SET default context . . . . . . . . 188
SHOW . . . . . . . . . . . . . . . . . . . 209

extremum . . . . . . . . . . . . . . . . . 11, 48, 71
Faddpath . . . . . . . . . . . . . . . . . . . . . . 17
Fapropos . . . . . . . . . . . . . . . . . . . . . . . 17
FAV transformation

averaging filleon . . . . . . . . . . 52
Fdata . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Fenv . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FER_DATA . . . . . . . . . . . . . . . . . . . . . 120

FER_DIR . . . . . . . . . . . . . . . . . . . . . . . 120
FER_DSETS . . . . . . . . . . . . . . . . . . . . 120
FER_GO . . . . . . . . . . . . . . . . . . . . . . . 120
FER_GRIDS . . . . . . . . . . . . . . . . . . . . 120
FER_PALETTE . . . . . . . . . . . . . . . . . . 120
ferret_paths . . . . . . . . . . . . . . . . . . . . 120
Fgo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Fgrids . . . . . . . . . . . . . . . . . . . . . . . . . 18

FILE . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
alias for SET DATA/EZ . . . . 186

FILL . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
CONTOUR/FILL . . . . . . . . . . 156

filtering
transformations . . . . . . . . . . . 43

flag (missing value) . . . . . . . . . . . . . . 36
FLN transformation

flow control (scripts) 15, 16, 166, 169, 195
Fman . . . . . . . . . . . . . . . . . . . . . . . . . . 18
font . . . . . . . . . . . . . . . . . . . . . . . 103, 192

Ferret controls . . . . . . . . . . . . . 103
PPLUS commands . . . . . . . . . 104

/FORMAT qualifier 184, 190, 216



233

data sets . . . . . . . . . . . . . . . . . . . 184
Ferret . . . . . . . . . . . . . . . . . . . . . . 23
FORMAT qualifier . . . . . . . . . . . 173
HDF . . . . . . . . . . . . . . . . . . . . . . . 83
MODE ASCII_FONT . . . . . . . . . 192
MODE LATIT_LABEL . . . . . . . 196
MODE LONG_LABEL . . . . . . . 196
NetCDF . . . . . . . . . . . . . . . . . . . . 22
numeric axis labels . . . . . . . . . . 92
standardized data . . . . . . . . . . . 21
TMAP . . . . . . . . . . . . . . . . . . . . . 23
TMAP format . . . . . . . . . . . . . . . 226

formatting viewport . . . . . . . . . . . . . . . . . 105
numerical output . . . . . 58, 175, 190
plots . . . . . . . . . . . . . . . . . . . . . . . 91

FORTRAN-formatted files . . . . . . . . . . 24
forward derivative conformable . . . . . . . . . . . . . . 39

@DDF transformation . . . . . . . . 50
Fpalette . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Fprint . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Fpurge . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Unix file naming . . . . . . . . . . . . 125
FRAME . . . . . . . . . . . . . . . . . . . . . . . . . . 167

/FILE=filename . . . . . . . . . . . . . 168
/FORMAT=format . . . . . . . . . . 168
/FORMAT=GIF . . . . . . . . . . . . . 168
/FORMAT=HDF . . . . . . . . . . . . 168

Fsort . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Unix . . . . . . . . . . . . . . . . . . . . . . . 125
Unix file naming . . . . . . . . . . . . 125

Ftoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
function . . . . . . . . . . . . . . . . . . . . . . . . . 40
GIF image . . . . . . . . . . . . . . . . . . . . . . . . 87
GKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

color map . . . . . . . . . . . . . . . . . . 98
graphic metafile . . . . . . . . . . . . . 122
MODE METAFILE . . . . . . . . . . 197
MODE SEGMENTS . . . . . . . . . . 198

gksm2ps . . . . . . . . . . . . . . . . . . . . . . . . . 124
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . 223
GO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

/HELP . . . . . . . . . . . . . . . . . . . . 169
demonstration files . . . . . . . . . . . 8

files . . . . . . . . . . . . . . . . . . . . 8, 12
files, as help . . . . . . . . . . . . . . 20
tools . . . . . . . . . . . . . . . . . . . . . . 9
Unix file naming . . . . . . . . . . . 126
writing tools . . . . . . . . . . . . . . 12

GO File . . . . . . . . . . . . . . . . . . . . . . . . 224
graphics

/SET_UP . . . . . . . . . . . . . . . . . 90
hard copy . . . . . . . . . . . . . . . . 122
memory . . . . . . . . . . . . . . . . . . 121
MODE METAFILE . . . . . . . . . 197
output controls . . . . . . . . . . . . 90

graticule . . . . . . . . . . . . . . . . . . . . . . . 10
grid . . . . . . . . . . . . . . . . . . . . . . 2, 63, 224

/DEFINE . . . . . . . . . . . . . . . . . 63

default . . . . . . . . . . . . . . . . . . . 187
DEFINE . . . . . . . . . . . . . . . . . . 161
DEFINE AXIS . . . . . . . . . . . . . 158
dynamic . . . . . . . . . . . . . . . 64, 223
grid box . . . . . . . . . . . . . . . . . . 224
grid file . . . . . . . . . . . . . . . . . . 224
regridding . . . . . . . . . . . . . . . . 68
SET . . . . . . . . . . . . . . . . . . . . . . 188
staggered . . . . . . . . . . . . . . . . . 138

gridding (point data) . . . . . . . . . . 12, 216
gridfile

searching . . . . . . . . . . . . . . 18, 120
UD and DU . . . . . . . . . . . . . . . 159

GT
locating files . . . . . . . . . . . . . . 120

hard copy . . . . . . . . . . . . . . . . . . . . . . 122
Fprint . . . . . . . . . . . . . . . . . . . . 122
gksm2ps . . . . . . . . . . . . . . . . . 124
MODE . . . . . . . . . . . . . . . . . . . 197
monochrome devices . . . . . . . 122

HDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
help

demos . . . . . . . . . . . . . . . . . . . 20
HELP . . . . . . . . . . . . . . . . . . . . 169
Unix on-line . . . . . . . . . . . . . . 19
within Ferret . . . . . . . . . . . . . . 20



234

histograms . . . . . . . . . . . . . . . . . . . . . . . 10
hyperslabs least squares . . . . . . . . . . . . . . . . . . . . 10

NetCDF . . . . . . . . . . . . . . . . . . . . 138
IF levels (contour) . . . . . . . . . . . . . . . . . 108

conditional execution . . . . . . . . 169
masking . . . . . . . . . . . . . . . . . . . 56

image . . . . . . . . . . . . . . . . . . . . . . . . . 83, 87
immediate mode . . . . . . . . . . . . . . . 57, 114
indefinite integral linear interpolation filler

@IIN transformation . . . . . . . . . 47
initialization file . . . . . . . . . . . . . . . . . . 120
insufficient memory . . . . . . . . . . . . . . . 121
integral . . . . . . . . . . . . . . . . . . . . . . . . 46, 47

transformations . . . . . . . . . . . . . 43
interpolation . . . . . . . . . . . . . . . . . . . . . 56
isosurface . . . . . . . . . . . . . . . . . . . . 6, 52, 53

@LOC . . . . . . . . . . . . . . . . . . . . . 52
@WEQ . . . . . . . . . . . . . . . . . . . . . 53

isotherm /NOHEAD . . . . . . . . . . . . . . . 175
locating . . . . . . . . . . . . . . . . . . . . . 6

Julian day . . . . . . . . . . . . . . . . . . . . . . . . 42
label /RIGID . . . . . . . . . . . . . . . . . . 176

axis . . . . . . . . . . . . . . . . . . . . . . . 96
contour line . . . . . . . . . . . . . . . . 110
Ferret controls . . . . . . . . . . . . . . 96
LABEL . . . . . . . . . . . . . . . . . . . . 171
MODE . . . . . . . . . . . . . . . . . . . . . 192
MODE ASCII_FONT . . . . . . . . . 192
MODE CALENDAR . . . . . . . . . 193
MODE DEPTH_LABEL . . . . . . 193
MODE LATIT_LABEL . . . . . . . 196
MODE LONG_LABEL . . . . . . . 196
movable labels . . . . . . . . . . . . . . 93
plot . . . . . . . . . . . . . . . . . . . . . . . 93
positioning with mouse . . . . . . 98
PPLUS commands . . . . . . . . . 93, 97
with pointing arrow . . . . . . . . . 98

LABEL /NOUSER . . . . . . . . . . . . . . . . 172
Lambert conformal projection . . . . . . . . 9
land longitude . . . . . . . . . . . . . . . . . . . . . . 77

GO . . . . . . . . . . . . . . . . . . . . . . . . 10
plot overlays . . . . . . . . . . . . . . . . 10

latitude . . . . . . . . . . . . . . . . . . . . . . . . . . 77

layout . . . . . . . 11, 91, 105, 107, 115, 125

LET . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

line
/LINE qualifier99, 108, 156, 179, 205
hard copy . . . . . . . . . . . . . . . . 124
line styles . . . . . . . . . . 10, 99, 179

@FLN transformation . . . . . . 52
LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

/APPEND . . . . . . . . . . . . . . . . 173
/D . . . . . . . . . . . . . . . . . . . . . . 173
/FILE . . . . . . . . . . . . . . . . . . . . 173
/FORMAT . . . . . . . . . . . . . . . 173
/HEAD . . . . . . . . . . . . . . . . . . 175
/HEADING[=ENHANCED] 175
/I /J /K /L . . . . . . . . . . . . . . . 173

/ORDER . . . . . . . . . . . . . . . . . 175
/PRECISION=# . . . . . . . . . . . 175

/SINGLY . . . . . . . . . . . . . . . . . 176
/TITLE="title string" . . . . . . . 176
/X /Y /Z /T . . . . . . . . . . . . . . 173

LOAD . . . . . . . . . . . . . . . . . . . . . . . . . 176
/D . . . . . . . . . . . . . . . . . . . . . . 177
/I/J/K/L . . . . . . . . . . . . . . . . 177
/NAME . . . . . . . . . . . . . . . . . . 177
/PERMANENT . . . . . . . . . . . 177
/TEMPORARY . . . . . . . . . . . . 177
/X/Y/Z/T . . . . . . . . . . . . . . . 177

LOC transformation
location of . . . . . . . . . . . . . . . . 52

location transformation
@LOC . . . . . . . . . . . . . . . . . . . . 52

logo . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
long_name

NetCDF variable attributes . . 131

loop . . . . . . . . . . . . . . . . . . . . . . . . . 15, 84
masking . . . . . . . . . . . . . . . . . . 10, 45, 56
matrix notation . . . . . . . . . . . . . . . . . . 27



235

MAX transformation MODE POLISH . . . . . . . . . . . . . . . . . 197
maximum value . . . . . . . . . . . . . 49

maximum . . . . . . . . . . . . . . . . . . . . . . 49, 71
maximum value MODE SEGMENTS . . . . . . . . . . . . . . 198

@MAX transformation . . . . . . . 49
MC data sets . . . . . . . . . . . . . . . . . . 23, 149
memory MODE WAIT . . . . . . . . . . . . . . . . . . . 199

CANCEL . . . . . . . . . . . . . . . . . . . 153
insufficient memory . . . . . . . . . 121
large calculations . . . . . . . . . . . . 194
loading expressions into . . . . . . 176
management . . . . . . 3, 121, 191, 194
MODE SEGMENTS . . . . . . . . . . 198
NetCDF . . . . . . . . . . . . . . . . . . . . 140

Mercator projection . . . . . . . . . . . . . . . . . 9
MESSAGE . . . . . . . . . . . . . . . . . . . . . . . 177

/CONTINUE . . . . . . . . . . . . . . . 177
/QUIET . . . . . . . . . . . . . . . . . . . . 177

metafile . . . . . . . . . . . . . . . . . . . . . . . . . . 224
hard copy . . . . . . . . . . . . . . . . . . 122
MODE METAFILE . . . . . . . . . . 197
naming . . . . . . . . . . . . . . . . 125, 197
translation . . . . . . . . . . . . . . . . . . 122

MIN transformation nearest neighbor filler
minimum value . . . . . . . . . . . . . 48

minimum . . . . . . . . . . . . . . . . . . . . . . 48, 71
minimum value accessing data with USE . . . . 215

@MIN transformation . . . . . . . . 48
missing value flag . . . . . . . . 36, 42, 59, 202
MODE CDL data initialization . . . . . 132

SET MODE . . . . . . . . . . . . . . . . . 191
SHOW MODE . . . . . . . . . . . . . . 212

MODE ASCII_FONT . . . . . . . . . . . . . . 192
MODE CALENDAR . . . . . . . . . . . . . . . 193
MODE DEPTH_LABEL . . . . . . . . . . . . 193
MODE DESPERATE . . . . . . . . . . . . . . . 194
MODE DIAGNOSTIC . . . . . . . . . . . . . . 194
MODE IGNORE_ERROR . . . . . . . . . . . 195
MODE INTERPOLATE . . . . . . . . . . . . 195
MODE JOURNAL . . . . . . . . . . . . . . . . . 195
MODE LATIT_LABEL . . . . . . . . . . . . . 196
MODE LONG_LABEL . . . . . . . . . . . . . 196
MODE METAFILE . . . . . . . . . . . . . . . . 197

MODE PPLLIST . . . . . . . . . . . . . . . . . 197
MODE REFRESH . . . . . . . . . . . . . . . . 198

MODE STUPID . . . . . . . . . . . . . . . . . 198
MODE VERIFY . . . . . . . . . . . . . . . . . 198

modes . . . . . . . . . . . . . . . . . . . . . . . . . 12
modulo . . . . . . . . . . . . . . . . . . . . . . . . 80

axis . . . . . . . . . . . 80, 140, 160, 225
NetCDF . . . . . . . . . . . . . . . . . . 140
regridding . . . . . . . . . . . . . 72, 225

modulo axis . . . . . . . . . . . . . . . . . . . . 225
modulo regridding . . . . . . . . . . . . . . 225
movies . . . . . . . . . . . . . . . . . . . . . . . . . 83

animations . . . . . . . . . . . . . . . . 83
MPEG . . . . . . . . . . . . . . . . . . . . . . . . . 87
multiple axis plots . . . . . . . . . . . . . . . 11
naming

Unix file naming . . . . . . . . . . . 125
variables . . . . . . . . . . . . . . . . . 164

ncdump . . . . . . . . . . . . . . . . . . . . . . . . 129
ncgen . . . . . . . . . . . . . . . . . . . . . . 129, 133

@FNR transformation . . . . . . 52
NetCDF22, 37, 127, 174, 182, 215, 223, 225

axis attributes . . . . . . . . . . . . . 130
axis definition . . . . . . . . . . . . . 131

CDL files . . . . . . . . . . . . . . . . . 130
child_axis . . . . . . . . . . . . . . . . 138
converting to . . . . . . . . . . . . . . 127
dimensions . . . . . . . . . . . . . . . 130
global attributes . . . . . . . . . . . 132
grid_definition . . . . . . . . . . . . 138
hyperslabs . . . . . . . . . . . . . . . . 138
locating . . . . . . . . . . . . . . . . . . 120
long_name . . . . . . . . . . . . . . . . 131
modulo axes . . . . . . . . . . . . . . 140
multi-file data sets . . . . . . 23, 149
parent grid . . . . . . . . . . . . . . . 138
slab_max_index . . . . . . . . . . . 139



236

slab_min_index . . . . . . . . . . . . . 139
special axis interpretations . . . . 132
staggered grids . . . . . . . . . . . . . 138
utilities . . . . . . . . . . . . . . . . . . . . 129
variable attributes . . . . . . . . . . . 130
variables . . . . . . . . . . . . . . . . . . . 130

notation potential temperature . . . . . . . . . . . . 42
@ notation . . . . . . . . . . . . . . . . . . 79

number of bad points /RESET . . . . . . . . . . . . . . . . . . 181
@NBD transformation . . . . . . . . 51

number of good points precision . . . . . . . . . . . . . . . . . . . . . . . 58
@NGD transformation . . . . . . . 51

objective analysis . . . . . . . . . . . . . . . 12, 216
on-line help . . . . . . . . . . . . . . . . . . . . 17-19
operator . . . . . . . . . . . . . . . . . . . . . . 39, 225
overlay . . . . . . . . . . . . . . . . . . . . . . . . . . 10

/OVERLAY qualifier156, 179, 205, 219, 222
GO tools . . . . . . . . . . . . . . . . . . . 10

palette polar stereographic . . . . . . . . 11
creation . . . . . . . . . . . . . . . . . 11, 101
locating files . . . . . . . . . . . . . 18, 120
PALETTE command . . . . . . . . . 177
restoring default . . . . . . . . . . . . 102
testing . . . . . . . . . . . . . . . . . . . . . 11

parent grid record structure
NetCDF . . . . . . . . . . . . . . . . . . . . 138

Parzen smoother region . . . . . . . . . . . . . . . . . . . . 2, 76, 225
@SPZ transformation . . . . . . . . . 50

pause DEFINE . . . . . . . . . . . . . . . . . . 163
MESSAGE . . . . . . . . . . . . . . . . . . 177

PEN pre-defined . . . . . . . . . . . . . . . 80
PPLUS commands . . . . . . . . . . . 99

PLOT . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
/D . . . . . . . . . . . . . . . . . . . . . . . . 179
/FRAME . . . . . . . . . . . . . . . . . . . 179
/I/J/K/L . . . . . . . . . . . . . . . . . . 179
/LINE . . . . . . . . . . . . . . . . . . . . . 179
/NOLABELS . . . . . . . . . . . . . . . 179
/OVERLAY . . . . . . . . . . . . . . . . 179
/SET_UP . . . . . . . . . . . . . . . . . . . 179
/SYMBOL . . . . . . . . . . . . . . . . . . 180
/TITLE . . . . . . . . . . . . . . . . . . . . 180
/TRANSPOSE . . . . . . . . . . . . . . 180

/VS . . . . . . . . . . . . . . . . . . . . . 180
/X/Y/Z/T . . . . . . . . . . . . . . . 179
/XLIMITS . . . . . . . . . . . . . . . . 180
/YLIMITS . . . . . . . . . . . . . . . . 181
layout . . . . . . . . . . . . . . . . . . . . 11

polar projections . . . . . . . . . . . . . . . . 11

PPLUS . . . . . . . . . . . . . . . . . . . . . . 89, 181

MODE ASCII_FONT . . . . . . . 192

print . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
printing

hard copy . . . . . . . . . . . . . . . . 122
projection

equal area . . . . . . . . . . . . . . . . . 9
Lambert conformal . . . . . . . . . . 9
Mercator . . . . . . . . . . . . . . . . . . 9

pseudo-variable . . . . . . . . . . . . . . 34, 225
qualifier . . . . . . . . . . . . . . . . . . . . . . . 225
QUIT

alias for EXIT . . . . . . . . . . . . . 181
random numbers . . . . . . . . . . . . . . . . 42

file . . . . . . . . . . . . . . . . . . . . . . 24

CANCEL . . . . . . . . . . . . . . . . . 154

named . . . . . . . . . . . . . . . . . . . 79

save and restore . . . . . . . . . . . 12
SET . . . . . . . . . . . . . . . . . . . . . . 200
SHOW . . . . . . . . . . . . . . . . . . . 212

region (irregular) . . . . . . . . . . . . . . . . 45
regressions . . . . . . . . . . . . . . . . . . . . . 10
regrid . . . . . . . . . . . . . . . . . . . . . . . . . 225
regridding . . . . . . . . . . . . . . . . 3, 68, 225

transformations . . . . . . . . . . . 70
relative version

GO . . . . . . . . . . . . . . . . . . . . . . 168
numbers . . . . . . . . . . . . . . . . . 126
Unix file naming . . . . . . . . . . . 126



237

REPEAT . . . . . . . . . . . . . . . . . . . . . . . . . 182
/I/J/K/L . . . . . . . . . . . . . . . . . . 182
/X/Y/Z/T . . . . . . . . . . . . . . . . . 182

reserved names . . . . . . . . . . . . . . . . . . . 164
running unweighted sum ASCII_FONT . . . . . . . . . . . . . 192

@RSUM transformation . . . . . . 52
sampling . . . . . . . . . . . . . . . . . . . . . . 12, 217

scattered sampling . . . . . . . . . . . 217
SAVE DIAGNOSTIC . . . . . . . . . . . . . 192

alias for LIST/FORM=CDF . . . 182
SBN transformation IGNORE_ERROR . . . . . . . . . . 192

binomial . . . . . . . . . . . . . . . . . . . 49
SBX transformation JOURNAL . . . . . . . . . . . . . . . . 192

boxcar . . . . . . . . . . . . . . . . . . . . . 49
scatter plots . . . . . . . . . . . . . . . . . . . . . . 180
scattered sampling . . . . . . . . . . . . . . . . 217
scripts . . . . . . . . . . . . . . . . . . . . . . . . . . 8, 12
section (vertical) . . . . . . . . . . . . . . . . . . 12
segments REFRESH . . . . . . . . . . . . . . . . 192

MODE SEGMENTS . . . . . . . . . . 198
SET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
SET AXIS . . . . . . . . . . . . . . . . . . . . . . . . 184
SET DATA WAIT . . . . . . . . . . . . . . . . . . . . 192

/EZ . . . . . . . . . . . . . . . . . . . . . . . 186
/EZ/COLUMNS . . . . . . . . . . . . 186
/EZ/GRID . . . . . . . . . . . . . . . . . 186
/EZ/ORDER . . . . . . . . . . . . . . . 187
/EZ/SKIP . . . . . . . . . . . . . . . . . . 187
/EZ/TITLE . . . . . . . . . . . . . . . . . 187
/EZ/VARIABLES . . . . . . . . . . . 187
/FORMAT . . . . . . . . . . . . . . . . . 184
/RESTORE . . . . . . . . . . . . . . . . . 186
/SAVE . . . . . . . . . . . . . . . . . . . . 186

SET DATA_SET . . . . . . . . . . . . . . . . . . . 184
SET EXPRESSION . . . . . . . . . . . . . . . . . 188
SET GRID . . . . . . . . . . . . . . . . . . . . . . . . 188

/RESTORE . . . . . . . . . . . . . . . . . 189
/SAVE . . . . . . . . . . . . . . . . . . . . 189

SET LIST . . . . . . . . . . . . . . . . . . . . . . . . . 189
/APPEND . . . . . . . . . . . . . . . . . 189
/FILE . . . . . . . . . . . . . . . . . . . . . 189
/FORMAT . . . . . . . . . . . . . . . . . 190
/HEAD . . . . . . . . . . . . . . . . . . . . 190

/PRECISION . . . . . . . . . . . . . 190
SET MEMORY . . . . . . . . . . . . . . . . . . 191
SET MODE . . . . . . . . . . . . . . . . . . . . . 191

/LAST . . . . . . . . . . . . . . . . . . . 192

CALENDAR . . . . . . . . . . . . . . 192
DEPTH_LABEL . . . . . . . . . . . 192
DESPERATE . . . . . . . . . . . . . . 192

GUI . . . . . . . . . . . . . . . . . . . . . 192

INTERPOLATE . . . . . . . . . . . 192

LATIT_LABEL . . . . . . . . . . . . 192
LONG_LABEL . . . . . . . . . . . . 192
METAFILE . . . . . . . . . . . . . . . 192
POLISH . . . . . . . . . . . . . . . . . . 192
PPLLIST . . . . . . . . . . . . . . . . . 192

SEGMENT . . . . . . . . . . . . . . . . 192
STUPID . . . . . . . . . . . . . . . . . . 192
VERIFY . . . . . . . . . . . . . . . . . . 192

SET MOVIE . . . . . . . . . . . . . . . . . . . . 199
/COMPRESS . . . . . . . . . . . . . . 200
/FILE . . . . . . . . . . . . . . . . . . . . 200
/LASER . . . . . . . . . . . . . . . . . . 200
/START . . . . . . . . . . . . . . . . . . 200

SET REGION . . . . . . . . . . . . . . . . . . . 200
/DI/DJ/DK/DL . . . . . . . . . . 201
/DX/DY/DZ/DY . . . . . . . . . 201
/I/J/K/L . . . . . . . . . . . . . . . . 201
/X/Y/Z/T . . . . . . . . . . . . . . . 201

SET VARIABLE . . . . . . . . . . . . . . . . . 201
/BAD . . . . . . . . . . . . . . . . . . . . 202
/GRID . . . . . . . . . . . . . . . . . . . 202
/TITLE . . . . . . . . . . . . . . . . . . 202
/UNITS . . . . . . . . . . . . . . . . . . 202

SET VIEWPORT . . . . . . . . . . . . . . . . . 202
SET WINDOW . . . . . . . . . . . . . . . . . . 203

/ASPECT . . . . . . . . . . . . . . . . 203
/CLEAR . . . . . . . . . . . . . . . . . 204
/LOCATION . . . . . . . . . . . . . 204



238

/NEW . . . . . . . . . . . . . . . . . . . . . 204
/SIZE . . . . . . . . . . . . . . . . . . . . . 204

setup SHOW LIST . . . . . . . . . . . . . . . . . . . . 210
/SET_UP . . . . . . . . . . . . . . . . . . . 89
setting up an account . . . . . . . . . 119

SHADE . . . . . . . . . . . . . . . . . . . . . . . . . . 204
/D . . . . . . . . . . . . . . . . . . . . . . . . 205
/FRAME . . . . . . . . . . . . . . . . . . . 205
/I/J/K/L . . . . . . . . . . . . . . . . . . 205
/KEY . . . . . . . . . . . . . . . . . . . . . . 205
/LEVELS . . . . . . . . . . . . . . . . . . 205
/NOKEY . . . . . . . . . . . . . . . . . . . 205
/NOLABELS . . . . . . . . . . . . . . . 205
/OVERLAY . . . . . . . . . . . . . . . . 205
/PALETTE . . . . . . . . . . . . . . . . . 206
/SET_UP . . . . . . . . . . . . . . . . . . . 206
/TITLE . . . . . . . . . . . . . . . . . . . . 206
/TRANSPOSE . . . . . . . . . . . . . . 206
/X/Y/Z/T . . . . . . . . . . . . . . . . . 205
/XLIMITS . . . . . . . . . . . . . . . . . . 206
/YLIMITS . . . . . . . . . . . . . . . . . . 207

shape (of variable) . . . . . . . . . . . . . . . . . 59
SHF transformation /ALL . . . . . . . . . . . . . . . . . . . . 213

shift data . . . . . . . . . . . . . . . . . . . 49
shift transformation /ALL . . . . . . . . . . . . . . . . . . . . 214

@SHF . . . . . . . . . . . . . . . . . . . . . . 49
SHN transformation slab_max_index

Hanning smoother . . . . . . . . . . . 50
SHOW . . . . . . . . . . . . . . . . . . . . . . . . . . 207

/ALL . . . . . . . . . . . . . . . . . . . . . . 207
SHOW ALIAS . . . . . . . . . . . . . . . . . . . . 207
SHOW AXIS . . . . . . . . . . . . . . . . . . . . . . 207

/ALL . . . . . . . . . . . . . . . . . . . . . . 208
SHOW COMMANDS . . . . . . . . . . . . . . 208
SHOW DATA special axis interpretations

/BRIEF . . . . . . . . . . . . . . . . . . . . 209
/FILES . . . . . . . . . . . . . . . . . . . . 209
/FULL . . . . . . . . . . . . . . . . . . . . . 209
/VARIABLES . . . . . . . . . . . . . . . 209

SHOW DATA_SET . . . . . . . . . . . . . . . . 208
SHOW EXPRESSION . . . . . . . . . . . . . . 209
SHOW GRID . . . . . . . . . . . . . . . . . . . . . 210

/ALL . . . . . . . . . . . . . . . . . . . . . . 210

/I/J/K/L . . . . . . . . . . . . . . . . 210
/X/Y/Z/T . . . . . . . . . . . . . . . 210

/ALL . . . . . . . . . . . . . . . . . . . . 211
SHOW MEMORY . . . . . . . . . . . . . . . 211

/ALL . . . . . . . . . . . . . . . . . . . . 211
/FREE . . . . . . . . . . . . . . . . . . . 211
/PERMANENT . . . . . . . . . . . 211
/TEMPORARY . . . . . . . . . . . . 211

SHOW MODE . . . . . . . . . . . . . . . . . . 212
/ALL . . . . . . . . . . . . . . . . . . . . 212

SHOW MOVIE . . . . . . . . . . . . . . . . . . 212
/ALL . . . . . . . . . . . . . . . . . . . . 212

SHOW QUERIES . . . . . . . . . . . . . . . . 212
SHOW REGION . . . . . . . . . . . . . . . . . 212
SHOW TRANSFORM . . . . . . . . . . . . 212

/ALL . . . . . . . . . . . . . . . . . . . . 213
SHOW VARIABLES . . . . . . . . . . . . . 213

/ALL . . . . . . . . . . . . . . . . . . . . 213
/DIAGNOSTIC . . . . . . . . . . . 213
/USER . . . . . . . . . . . . . . . . . . . 213

SHOW VIEWPORT . . . . . . . . . . . . . . 213

SHOW WINDOWS . . . . . . . . . . . . . . 214

sigma coordinate . . . . . . . . . . . . . . . . . 9

NetCDF . . . . . . . . . . . . . . . . . . 139
slab_min_index

NetCDF . . . . . . . . . . . . . . . . . . 139
smoothing

contour lines . . . . . . . . . . . . . . 110
transformations . . . . . . . . . 43, 45

SPAWN . . . . . . . . . . . . . . . . . . . . . . . . 214

NetCDF . . . . . . . . . . . . . . . . . . 132
SPZ transformation

Parzen . . . . . . . . . . . . . . . . . . . 50
staggered grids

NetCDF . . . . . . . . . . . . . . . . . . 138
standard deviation . . . . . . . . . . . . . . . 48
state (equation of) . . . . . . . . . . . . . . . 42
state (Ferret state) . . . . . . . . . 12, 189, 191



239

STATISTICS . . . . . . . . . . . . . . . . . . . . . . 214
/D . . . . . . . . . . . . . . . . . . . . . . . . 215
/I/J/K/L . . . . . . . . . . . . . . . . . . 215
/X/Y/Z/T . . . . . . . . . . . . . . . . . 215
BRIEF . . . . . . . . . . . . . . . . . . . . . 215

string . . . . . . . . . . . . . . . . . . . . . 13, 113, 115
subroutines (scripts) . . . . . . . . . . . . . . . 15
subscript . . . . . . . . . . . . . . . . . . . . . . . 2, 226
SUM transformation @FLN linear interpolation filler52

unweighted sum . . . . . . . . . . . . 51
SWL transformation @IIN indefinite integral . . . . . 47

Welch . . . . . . . . . . . . . . . . . . . . . 50
symbol @MAX maximum value . . . . . 49

plot point symbols . . . . . . 9, 10, 180
text . . . . . . . . . . . . . . . . . . . . . . . . 113
text string as . . . . . . . . . . . . . . . . 115

syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
abbreviated . . . . . . . . . . . . . . . . . . 8
command . . . . . . . . . . . . . . . . . . 225
filenames . . . . . . . . . . . . . . . . . . 126
region . . . . . . . . . . . . . . . . . . . . . 76
regridding . . . . . . . . . . . . . . . . . 68
transformation . . . . . . . . . . . . . . 43
variable . . . . . . . . . . . . . . . . . . 33, 43

Tektronix @SWL Welch smoother . . . . . 50
MODE WAIT . . . . . . . . . . . . . . . 199

text . . . . . . . . . . . . . . . . . . . . . . . . . 113, 115
color . . . . . . . . . . . . . . . . . . . . . . 99
font . . . . . . . . . . . . . . . . . . . 103, 192

three-dimensional plot general information . . . . . . . . 44
WIRE . . . . . . . . . . . . . . . . . . . . . . 221

time . . . . . . . . . . . . . . . . . . . . . . . 42, 78, 140
time axis TS

MODE CALENDAR . . . . . . . . . 193
title tutorial . . . . . . . . . . . . . . . . . . . . . . . 2, 9

/TITLE qualifier 180, 206, 220, 222
data set . . . . . . . . . . . . . . . . . . . . 187
defining variable title . . . . . . . . 165
plot . . . . . . . . . . . . . . . . . . . . . . . 93
TITLE qualifier . . . . . . . . . . . . . . 157

TMAP-formatted file . . . . . . . . . . . 23, 226
tools environment variables . . . . . . 18

Unix tools . . . . . . . . . . . . . . . . . . 17

tracer
scattered . . . . . . . . . . . . . . . . . 217

transformation . . . . . . . . . . . . . 5, 43, 226
@DDB backward derivative . 51
@DDC centered derivative . . 50
@DDF forward derivative . . . 51
@DIN definite integral . . . . . . 46
@FAV averaging filler . . . . . . 52

@FNR nearest neighbor filler 52

@LOC location of . . . . . . . . . . 52

@MIN minimum value . . . . . 48
@NBD number of bad points 51
@NGD number of good points 51
@RSUM running unweighted sum

. . . . . . . . . . . . . . . . . . . 52
@SBN binomial smoother . . . 49
@SBX boxcar smoother . . . . . 49
@SHF shift data . . . . . . . . . . . 49
@SHN Hanning smoother . . . 50
@SPZ Parzen smoother . . . . . 50
@SUM unweighted sum . . . . 51

@VAR weighted variance . . . 48
@WEQ weighted equal . . . . . 53
axis . . . . . . . . . . . . . . . . . . . . . 5, 43
examples . . . . . . . . . . . . . . . . . 44

regridding . . . . . . . . . . . . . . . . 70
SHOW . . . . . . . . . . . . . . . . . . . 44

locating files . . . . . . . . . . . . . . 120

unformatted files . . . . . . . . . . . . . . . . 24
units . . . . . . . . . . . . . . . . . . . . . . 161, 202

axis . . . . . . . . . . . . . . . . . . . . . . 161
in transformations . . . . . . . . . 44

Unix
command line . . . . . . . . . . . . . . 3

from Ferret . . . . . . . . . . . . . . . 214



240

setting up an account . . . . . . . . . 119
Unix tools . . . . . . . . . . . . . . . . . . 17

unmapped windows . . . . . . . . . . . . . . . . 3
unweighted sum /TITLE . . . . . . . . . . . . . . . . . . 220

@SUM transformation . . . . . . . . 51
transformation @RSUM . . . . . . 52
transformation @SUM . . . . . . . . 51

USE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
SET DATA/FORMAT=CDF . . . 185

USER . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
user’s group . . . . . . . . . . . . . . . . . . . . . . . 2
utilities special . . . . . . . . . . . . . . . . . . . 10

NetCDF utilities . . . . . . . . . . . . . 129
Unix tools . . . . . . . . . . . . . . . . . . 17

VAR transformation purging . . . . . . . . . . . . . . . . . . 19
weighted variance . . . . . . . . . . . 48

variable . . . . . . . . . . . . . . . . . . . . . 2, 33, 223
abstract . . . . . . . . . . . . . . . 5, 35, 223
conformable . . . . . . . . . . . . . . . . 39
default . . . . . . . . . . . . . . . . . . . . . 61
DEFINE . . . . . . . . . . . . . . . . . . . 164
file . . . . . . . . . . . . . . . . . . . . . 34, 224
global . . . . . . . . . . . . . . . . . . . . . 61
local . . . . . . . . . . . . . . . . . . . . . . . 61
NetCDF . . . . . . . . . . . . . . . . . . . . 130
pseudo . . . . . . . . . . . . . . . . . 34, 225
reserved names . . . . . . . . . . . . . 164
SET . . . . . . . . . . . . . . . . . . . . . . . 201
SET DATA_SET . . . . . . . . . . . . . 184
SHOW . . . . . . . . . . . . . . . . . . . . . 213
syntax . . . . . . . . . . . . . . . . . . . . . 33
user . . . . . . . . . . . . . . . . . . . . . . . 35
user-defined . . . . . . 37, 60, 154, 164

variance WEQ transformation
regridding transform . . . . . . . . 70
transformation @VAR . . . . . . . . 48

VECTOR . . . . . . . . . . . . . . . . . . . . . . . . . 218
/ASPECTS . . . . . . . . . . . . . . . . . 219
/D . . . . . . . . . . . . . . . . . . . . . . . . 218
/FRAME . . . . . . . . . . . . . . . . . . . 219
/I/J/K/L . . . . . . . . . . . . . . . . . . 218
/LENGTH . . . . . . . . . . . . . . . . . 219
/NOLABELS . . . . . . . . . . . . . . . 219

/OVERLAY . . . . . . . . . . . . . . . 219
/PEN . . . . . . . . . . . . . . . . . . . . 220
/SET_UP . . . . . . . . . . . . . . . . . 220

/TRANSPOSE . . . . . . . . . . . . 220
/X/Y/Z/T . . . . . . . . . . . . . . . 218
/XLIMITS . . . . . . . . . . . . . . . . 220
/XSKIP . . . . . . . . . . . . . . . . . . 220
/YLIMITS . . . . . . . . . . . . . . . . 221
/YSKIP . . . . . . . . . . . . . . . . . . 220

vectors

versions
GO . . . . . . . . . . . . . . . . . . . . . . 168

relative version numbers . . . . 126
Unix file naming . . . . . . . . . . . 125

vertical profile
example of reading file . . . . . 30

viewport . . . . . . . . . . . . . . . . . 4, 105, 165
advanced usage . . . . . . . . . . . 107
CANCEL . . . . . . . . . . . . . . . . . 155
pre-defined . . . . . . . . . . . . . . . 106
SET . . . . . . . . . . . . . . . . . . . . . . 202
SHOW . . . . . . . . . . . . . . . . . . . 213

wait
MESSAGE . . . . . . . . . . . . . . . . 177

weighted equal
@WEQ transformation . . . . . . 53

weighted variance
@VAR . . . . . . . . . . . . . . . . . . . 48

Welch smoother
@SWL transformation . . . . . . 50

weighted equal . . . . . . . . . . . . 53
window . . . . . . . . . . . . . . . . . . . . . . . . 227

CANCEL . . . . . . . . . . . . . . . . . 155
SET . . . . . . . . . . . . . . . . . . . . . . 203
SHOW . . . . . . . . . . . . . . . . . . . 214

windowing
transformations . . . . . . . . . . . 43

windows
size and shape . . . . . . . . . . . . 203



241

WIRE . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
/D . . . . . . . . . . . . . . . . . . . . . . . . 221
/FRAME . . . . . . . . . . . . . . . . . . . 221
/I/J/K/L . . . . . . . . . . . . . . . . . . 221
/NOLABEL . . . . . . . . . . . . . . . . 221
/OVERLAY . . . . . . . . . . . . . . . . 222
/SET_UP . . . . . . . . . . . . . . . . . . . 222
/TITLE . . . . . . . . . . . . . . . . . . . . 222
/TRANSPOSE . . . . . . . . . . . . . . 222
/VIEWPOINT . . . . . . . . . . . . . . 222
/X/Y/Z/T . . . . . . . . . . . . . . . . . 221
/ZLIMITS . . . . . . . . . . . . . . . . . . 222
/ZSCALE . . . . . . . . . . . . . . . . . . 222
example . . . . . . . . . . . . . . . . . . . 221

wire frame . . . . . . . . . . . . . . . . . . . . . . . 221
world coordinate . . . . . . . . . . . . . . . . 2, 227
World Wide Web . . . . . . . . . . . . . . . . 1, 87
X  windows

size and shape . . . . . . . . . . . . . . 203
X Data Slice . . . . . . . . . . . . . . . . . . . . . . 84
X windows

backing store . . . . . . . . . . . . . . . 198
setting up an account . . . . . . . . . 119
unmapped . . . . . . . . . . . . . . . . . . 3

X-Y plot
PLOT . . . . . . . . . . . . . . . . . . . . . . 178


	CONTENTS
	Chapter 1: INTRODUCTION
	1 OVERVIEW
	1.1 Ferret User’s Group

	2 GETTING STARTED
	2.1 Concepts
	2.2 Unix command line switches
	2.3 Sample sessions
	2.3.1 Accessing a formatted data set
	2.3.2 Reading an ASCII data file
	2.3.3 Using viewports
	2.3.4 Using abstract variables
	2.3.5 Using transformations
	2.3.6 Using algebraic expressions
	2.3.7 Finding the 20-degree isotherm


	3 COMMON COMMANDS
	4 COMMAND SYNTAX
	5 GO FILES
	5.1 Demonstration files
	5.2 GO tools
	5.3 Writing GO tools
	5.3.1 Documenting GO tools
	5.3.2 Preserving the Ferret state in GO tools
	5.3.3 Silent GO tools
	5.3.4 Arguments to GO tools
	5.3.5 Flow Control in GO tools
	5.3.6 Debugging GO tools


	6 SAMPLE DATA SETS
	7 UNIX TOOLS
	8 HELP
	8.1 Unix on-line help
	8.2 Examples and demonstrations
	8.3 Help from within Ferret


	Chapter 2: DATA SETS
	1 OVERVIEW
	2 NETCDF DATA
	2.1 Multi-file NetCDF data sets

	3 TMAP-FORMATTED DATA
	4 BINARY DATA
	4.1 FORTRAN-structured binary files
	4.1.1 Records of uniform length
	4.1.2 Records of non-uniform length

	4.2 Unstructured binary files

	5 ASCII DATA
	5.1 Reading ASCII files

	6 TRICKS TO READING BINARY AND ASCII FILES

	Chapter 3: VARIABLES AND EXPRESSIONS
	1 VARIABLES
	1.1 Variable syntax
	1.2 File variables
	1.3 Pseudo-variables
	1.4 User-defined variables
	1.5 Abstract variables
	1.6 Missing value flags
	1.6.1 Missing values in input files
	1.6.2 Missing values in user-defined variables
	1.6.3 Missing values in output NetCDF files
	1.6.4 Displaying the missing value flag


	2 EXPRESSIONS
	2.1 Operators
	2.2 Multi-dimensional expressions
	2.3 Functions
	2.4 Transformations
	2.4.1 General information about transformations
	2.4.2 Transformations applied to irregular regions
	2.4.3 General information about smoothing transformations
	2.4.4 @DIN—definite integral
	2.4.5 @IIN—indefinite integral
	2.4.6 @AVE—average
	2.4.7 @VAR—weighted variance
	2.4.8 MIN—minimum
	2.4.9 @MAX—maximum
	2.4.10 @SHF:n—shift
	2.4.11 @SBX:n—boxcar smoother
	2.4.12 @SBN:n—binomial smoother
	2.4.13 @SHN:n—Hanning smoother
	2.4.14 @SPZ:n—Parzen smoother
	2.4.15 @SWL:n—Welch smoother
	2.4.16 @DDC—centered derivative
	2.4.17 @DDF—forward derivative
	2.4.18 @DDB—backward derivative
	2.4.19 @NGD—number of good points
	2.4.20 @NBD—number of bad points
	2.4.21 @SUM—unweighted sum
	2.4.22 @RSUM—running unweighted sum
	2.4.23 @FAV:n—averaging filler
	2.4.24 @FLN:n—linear interpolation filler
	2.4.25 @FNR:n—nearest neighbor filler
	2.4.26 @LOC—location of
	2.4.27 @WEQ—weighted equal; integration kernel
	2.4.28 @ITP—interpolate

	2.5 IF-THEN logic (“masking”)

	3 EMBEDDED EXPRESSIONS
	3.1 Special calculations using embedded expressions

	4 DEFINING NEW VARIABLES
	4.1 Global, local, and default variable definitions
	5 DEBUGGING COMPLEX HIERARCHIES OF EXPRESSIONS

	Chapter 4: GRIDS AND REGIONS
	1 OVERVIEW
	2 GRIDS
	2.1 Defining grids
	2.2 Dynamic grids and axes
	2.2.1 Dynamic grids
	2.2.2 Dynamic axes
	2.2.3 Dynamic pseudo-variables

	2.3 Regridding
	2.3.1 Regridding transformations

	2.4 Modulo regridding
	2.4.1 Modulo regridding statistics


	3 REGIONS
	3.1 Latitude
	3.2 Longitude
	3.3 Depth
	3.4 Time
	3.5 Delta
	3.6 @ notation
	3.7 Modulo axes


	Chapter 5: ANIMATIONS AND GIF IMAGES
	1 OVERVIEW
	2 CREATING AN HDF MOVIE
	3 DISPLAYING AN HDF MOVIE
	4 ADVANCED MOVIE-MAKING
	4.1 REPEAT command
	4.1.1 Initializing the color table
	4.1.2 Making movies in batch mode


	5 CREATING GIF IMAGES
	6 CREATING MPEG ANIMATIONS

	Chapter 6: CUSTOMIZING PLOTS
	1 OVERVIEW
	2 GRAPHICAL OUTPUT
	2.1 Ferret graphical output controls
	2.2 PPLUS graphical output commands

	3 AXES
	3.1 Ferret axis controls
	3.2 PPLUS axis commands

	4 LABELS
	4.1 Listing labels
	4.2 Adding labels
	4.3 Removing movable labels
	4.4 Axis labels and title
	4.5 Ferret label controls
	4.6 PPLUS label commands
	4.7 Positioning labels using the mouse pointer
	4.8 Labeling details with arrows and text

	5 COLOR
	5.1 Text and line colors
	5.1.1 Ferret color controls for lines
	5.1.2 PPLUS text and line color commands

	5.2 Shade and fill colors
	5.2.1 Ferret shade and fill color controls
	5.2.2 PPLUS shade color commands


	6 FONTS
	6.1 Ferret font controls
	6.2 PPLUS font commands

	7 PLOT LAYOUT
	7.1 Ferret layout controls
	7.1.1 Viewports
	7.1.2 Pre-defined viewports
	7.1.3 Advanced usage of viewports

	7.2 PPLUS layout commands
	7.3 Controlling the white space around plots

	8 CONTOURING
	8.1 Ferret contour controls
	8.1.1 /LEVELS qualifier

	8.2 PPLUS contour commands


	Chapter 7: HANDLING STRING DATA: “SYMBOLS”
	1 AUTOMATICALLY GENERATED SYMBOLS
	2 USE WITH EMBEDDED EXPRESSIONS
	3 ORDER OF STRING SUBSTITUTIONS
	4 CUSTOMIZING THE POSITION AND STYLE OF PLOT LABELS
	5 USING SYMBOLS IN COMMAND FILES
	6 PLOT+ STRING EDITING TOOLS
	7 SYMBOL EDITING
	8 SPECIAL SYMBOLS

	Chapter 8: COMPUTING ENVIRONMENT
	1 SETTING UP AN ACCOUNT
	2 FILES AND ENVIRONMENT VARIABLES USED BY FERRET
	3 MEMORY USE
	4 HARD COPY AND METAFILE TRANSLATION
	4.1 Hard copy
	4.2 Metafile translation

	5 OUTPUT FILE NAMING
	6 INPUT FILE NAMING
	6.1 Relative version numbers


	Chapter 9: CONVERTING TO NetCDF
	1 OVERVIEW
	2 SIMPLE CONVERSIONS USING FERRET
	3 WRITING A CONVERSION PROGRAM
	3.1 Creating a CDL file with Ferret
	3.2 The CDL file
	3.2.1 Dimensions
	3.2.2 Variables
	3.2.3 Data

	3.3 Standardized NetCDF attributes
	3.4 Directing data to a CDF file
	3.5 Advanced NetCDF procedures
	3.5.1 Staggered grid
	3.5.2 Hyperslabs
	3.5.3 Unevenly spaced coordinates
	3.5.4 Evenly spaced coordinates (long axes)
	3.5.5 “Modulo” axes
	3.5.6 Reversed-coordinate axes
	3.5.7 Converting time word data to numerical data

	3.6 Example CDL file

	4 CREATING A MULTI-FILE NETCDF DATA SET

	Part II: COMMANDS REFERENCE
	1 ALIAS
	2 CANCEL
	2.1 CANCEL ALIAS
	2.2 CANCEL AXIS
	2.3 CANCEL DATA_SET
	2.4 CANCEL EXPRESSION
	2.5 CANCEL LIST
	2.6 CANCEL MEMORY
	2.7 CANCEL MODE
	2.8 CANCEL MOVIE
	2.9 CANCEL REGION
	2.10 CANCEL VARIABLE
	2.11 CANCEL VIEWPORT
	2.12 CANCEL WINDOW

	3 CONTOUR
	4 DEFINE
	4.1 DEFINE ALIAS
	4.2 DEFINE AXIS
	4.3 DEFINE GRID
	4.4 DEFINE REGION
	4.5 DEFINE VARIABLE
	4.6 DEFINE VIEWPORT

	5 ELIF
	6 ELSE
	7 ENDIF
	8 EXIT
	9 FILE
	10 FILL
	11 FRAME
	12 GO
	13 HELP
	14 IF
	15 LABEL
	16 LET
	17 LIST
	18 LOAD
	19 MESSAGE
	20 PALETTE
	21 PLOT
	22 PPLUS
	23 QUIT
	24 REPEAT
	25 SAVE
	26 SET
	26.1 SET AXIS
	26.2 SET DATA_SET
	26.3 SET EXPRESSION
	26.4 SET GRID
	26.5 SET LIST
	26.6 SET MEMORY
	26.7 SET MODE
	26.7.1 SET MODE ASCII_FONT
	26.7.2 SET MODE CALENDAR
	26.7.3 SET MODE DEPTH_LABEL
	26.7.4 SET MODE DESPERATE
	26.7.5 SET MODE DIAGNOSTIC
	26.7.6 SET MODE IGNORE_ERROR
	26.7.7 SET MODE INTERPOLATE
	26.7.8 SET MODE JOURNAL
	26.7.9 SET MODE LATIT_LABEL
	26.7.10 SET MODE LONG_LABEL
	26.7.11 SET MODE METAFILE
	26.7.12 SET MODE POLISH
	26.7.13 SET MODE PPLLIST
	26.7.14 SET MODE REFRESH
	26.7.15 SET MODE SEGMENTS
	26.7.16 SET MODE STUPID
	26.7.17 SET MODE VERIFY
	26.7.18 SET MODE WAIT

	26.8 SET MOVIE
	26.9 SET REGION
	26.10 SET VARIABLE
	26.11 SET VIEWPORT
	26.12 SET WINDOW

	27 SHADE
	28 SHOW
	28.1 SHOW ALIAS
	28.2 SHOW AXIS
	28.3 SHOW COMMANDS
	28.4 SHOW DATA_SET
	28.5 SHOW EXPRESSION
	28.6 SHOW GRID
	28.7 SHOW LIST
	28.8 SHOW MEMORY
	28.9 SHOW MODE
	28.10 SHOW MOVIE
	28.10.1 SHOW QUERIES

	28.11 SHOW REGION
	28.12 SHOW TRANSFORM
	28.13 SHOW VARIABLES
	28.14 SHOW VIEWPORT
	28.15 SHOW WINDOWS

	29 SPAWN
	30 STATISTICS
	31 UNALIAS
	32 USE
	33 USER
	33.1 Objective analysis
	33.2 Scattered sampling

	34 VECTOR
	35 WIRE

	GLOSSARY
	INDEX

